1. Craig’s Interpolation Theorem [Cra57]

Definition. Let F and G be first-order formulas such that $F \vdash G$. A Craig-Lyndon interpolant of F and G is a first-order formula H such that

1. $F \vdash H \vdash G$.
2. A predicate occurs positively (negatively) in H only if it occurs positively (negatively) in both F and G.
3. A function occurs in H only if it occurs in both F and G.

$p \leq q \rightarrow p \leq q \rightarrow H$.

2. Definitions Compositor as Interpolation

The following statements are equivalent:

1. $F \vdash H$.
2. H is a compositor of F.

Rationale: $F \vdash p(x) \rightarrow p(x)$ if and only if $F \vdash p(x) \rightarrow p(x)$.

3. Construction of First-Order Craig Interpolants

Basic approach: extract H from a proof of $F \vdash G$.

4. Clausal Tableaux [Let99a] (aka Clause Tableaux [Häh01])

Definition. A clausal tableau for a formula F is a finite ordered tree whose nodes N with exception of the root are labeled with a first-order literal, denoted by $\lnot i(t)$, such that: For each node N the disjunction of the labels $\{\lnot i(t) \mid v \in N\}$ in their left-to-right order, denoted by clause(N), is an instance of a clause in F.

A node N is called closed if and only if it has an ancestor N' with clause($N') = \{\lnot i(t)\}$. With a closed node N, a particular such ancestor N' is associated with a target(N). A tableau is called closed if and only if all of its leaves are closed.

The universal closure of a clausal formula F (with at least one constant) is unsatisfiable if and only if there exists a clausal tableau for F. If and only if there exists a closed clausal tableau for a formula F', the terms formed from functions in F.

$p(x) \land q(x) \land r(x) \rightarrow p(x)$.

5. Interpolant Extraction from Clausal Ground Tableaux

Definition. A colored clausal tableau for F and $\text{color}(N)$ is a clausal tableau for $\text{color}(N)$ whose nodes N with exception of the root are labeled additionally with $\text{color}(N) \in \{\text{red}, \text{blue}\}$ such that if N is a leaf of N, then $\text{color}(N)$ is an instance of a clause in F.

$p(x) \land q(x) \land r(x) \rightarrow p(x)$.

Underlying Property. For all nodes N of $\text{color}(N)$ is a Craig-Lyndon interpolant of $\text{branch}_{\text{color}(N)}(N)$ and $\text{branch}_{\text{color}(N)}(N)$, where $\text{branch}_{\text{color}(N)}(N)$ is the conjunct of the literal labels of Color nodes on the branch to N including N.

10. Interpolant Construction for RQFO Formulas

Definition. Let F and G be RQFO formulas such that $F \vdash G$. Let T be a clausal ground tableau for two clausal formulas obtained by classifying $\text{DEF}^*(F)$ and $\text{DEF}^*(G)$. Assume that T is closed, eager, red-left for the set of all $\text{DEF}^*(F)$, $\text{DEF}^*(G)$, $\text{DEF}^*(F)$, $\text{DEF}^*(G)$, and $\text{DEF}^*(F)$, $\text{DEF}^*(G)$. For inner nodes N of T with children N_1, N_2, \ldots, N_N define $\text{acc}(N)$, depending on the form 1–N of which clause(N) is an instance:

$p(x) \land q(x) \land r(x) \rightarrow p(x)$.

Example: Interpolant from Clausal Ground Tableaux

With a closed node N that originates in the node corresponding to $\text{leaf}(N)$, $\text{branch}_{\text{leaf}(N)}(N)$ is defined inductively for all nodes N.

$p(x) \land q(x) \land r(x) \rightarrow p(x)$.

Answer: $\text{branch}_{\text{leaf}(N)}(N)$.