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Beth Definability and Craig Interpolation in a Nutshell

Definition. Q is implicitly definable in terms of vocabulary V withinK iff
K ∧K

′
⊧ Q ↔ Q

′
,whereK ′ and Q

′ are copies ofK and Q with all symbols not in V replaced by fresh symbols
This says: If two models ofK agree on values of symbols in V , then they agree on the value of Q

Definition. Q is explicitly definable in terms of vocabulary V withinK iffthere exists a formula R in vocabulary V s.th. K ⊧ Q ↔ R

[Beth 1953] In first-order logic implicit and explicit definability are equivalent
Definition. A Craig interpolant of F and G s.th. F ⊧ G is a formulaH s.th.(1.) F ⊧ H (2.) H ⊧ G (3.) The vocabulary ofH is in the common vocabulary of F and G

[Craig 1957] In first-order logicH exists and can be extracted from a proof of F ⊧ G

Proof of [Beth] via [Craig].Write implicit definability asK ∧Q ⊧ K
′
→ Q

′

ObtainR as Craig interpolant ofK ∧Q andK ′
→ Q

′
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K ⊧ Q ↔ R
K ⊧ Q → R K ⊧ R → Q
K ∧Q ⊧ R ⊧ K

′
→ Q

′



Beth via Craig in Databases and Knowledge Representation

K ⊧ Q ↔ R

K ∧Q ⊧ R ⊧ K
′
→ Q

′

Synthesis of definitions by Craig interpolation is a logic-based technique for query reformulation
[Nash/Segoufin/Vianu 2005, 2010][Toman/Wedell 2011][Benedikt et al. 2016]

Strengthened variations of Craig interpolation preserve criteria for domain independence, e.g.,through relativized quantifiers [Benedikt et al. 2015] or range-restriction [W 2023]
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Our Question: Beth via Craig to Synthesize Answer Set Programs?

P ⊧ Q ↔ R

P ∧Q ⊧ R ⊧ P
′
→ Q

′

Idea: For given logic programs P,Q and vocabulary V
synthesize a program R in V that is “equivalent” to Q under assumptions P
But: Logic programs are considered under nonmonotonic semantics
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Answer Set Programming with the Stable Model Semantics

A logic program is a set of rules of the form
A1; . . . ;Ak;not Ak+1; . . . ;not Al ← Al+1, . . . , Am,not Am+1, . . . ,not An

• I.e., we consider disjunctive logic programs with negation in the head• Atoms can have argument terms built from variables, constants and function symbols
An answer set solver computes answer sets (stable models [Gelfond/Lifschitz 1988]) of a program
• These are minimal Herbrand models in which all facts are properly justified in a non-circular way
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a ← not b
b ← not c
d

{d, b}

fly(X) ← bird(X),not ab(X)
ab(X) ← penguin(X)
bird(X) ← penguin(X)
bird(tweety)
penguin(skippy)

{penguin(skippy), bird(tweety),
bird(skippy), ab(skippy), fly(tweety)}

p ← a
a ← not b
b ← not a

{p, a}, {b}

p ← p
q ← not p

{q}



Strong Equivalence of Answer Set Programs

Definition. [Lifschitz/Pearce/Valverde 2001]Programs P and Q are strongly equivalent ifffor all programsX it holds that P ∪X andQ∪X have the same answer sets
Justifies replacing a subset of rules while preserving overall semantics

p ← not q p
Equivalent: both have the same single answer set {p}But not strongly equivalent: if we add q we get {q} and {p, q}, rsp.

p ← q
q

p
q

These are strongly equivalent

p ← q,not q Strongly equivalent to the empty program

6



Strong Equivalence can be Represented as Classical First-Order Equivalence

For each program predicate p we havetwo logic predicates p0, p1

Representing a logic with two worlds:
here p0 and there p1

Representing a three valued logic:
p is false ¬p0∧¬p1

p is not false ¬p0∧ p
1

p is true p
0 ∧ p

1
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Definition (Sketch). For a rule
R = p(X);not q(X) ← r(X),not s(X)define

γ
0(R) def

= ∀x (r0(x) ∧ ¬s1(x) → p
0(x) ∨ ¬q1(x))

γ
1(R) def

= ∀x (r1(x) ∧ ¬s1(x) → p
1(x) ∨ ¬q1(x))

For a program P define
γ(P ) def

= ⋀R∈P γ
0(R) ∧⋀R∈P γ

1(R)
For a program P define

SP
def
= ⋀p∈Pred(P ) ∀x(p

0(x) → p
1(x))

Proposition. [Lin 2002, Pearce/Tompits/Woltran 2009,Ferraris/Lee/Lifschitz 2011, Heuer 2020]
Programs P and Q are strongly equivalent iff

SP∪Q ∧ γ(P ) ≡ SP∪Q ∧ γ(Q)



Making Precise Our Question for Synthesis of Logic Programs

P ⊧ Q ↔ R

P ∧Q ⊧ R ⊧ P
′
→ Q

′

Idea: For given logic programs P,Q and vocabulary V
synthesize a program R in V that is “equivalent” to Q under assumptions P
But: Logic programs are considered under nonmonotonic semantics

Task. For given programs P,Q and vocabulary V (a set of predicates)compute a program R in V s.th. P ∪R is strongly equivalent to P ∪Q

We consider strong equivalence wrt. a “background program” P , which may be empty
R in V and for all programsX it holds thatX ∪ P ∪Q andX ∪ P ∪R have the same answer sets
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Outline of Our Approach to the Synthesis of Logic Programs

Task. For given programs P,Q and vocabulary V (a set of predicates)compute a program R in V s.th. P ∪R is strongly equivalent to P ∪Q

1. Develop a first-order characterization of first-order formulas that encode a logic program

2. Develop a method to decode such a formula into a program, up to strong equivalence
3. Develop a variation of Craig interpolation for formulas that encode logic programs

4. On its basis, show a projective Beth theorem for logic programs
• It inherits effectivity and practical implementations from Craig interpolation• Its effective version realizes the considered task

5. A refinement gives some control on allowed positions in rule components of predicates in R(head ∣ body) × (positive ∣ negated)

9



Characterizing and Decoding Formula-Encoded Logic Programs

Definition. rename0↦1(F ) is F with 0-superscripted predicates p0 replaced bythe corresponding 1-superscripted predicates p1
Definition. F encodes a program iff F is universal and SF ∧ F ⊧ rename0↦1(F )

Theorem: Formulas Encoding a Logic Program.
(i) For all programs P : γ(P ) encodes a program
(ii) If F encodes a program, then there is a program P s.th.

(1) SF ⊧ γ(P ) ↔ F

(2) Pred (P ) ⊆ PredLP (F )
(3) Fun(P ) ⊆ Fun(F )
Moreover, such a program P can be effectively constructed from F

Proof. Procedure that extracts P from given F
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On the Decoding Procedure

For given F that encodes a program (SF ∧ F ⊧ rename0↦1(F )), returns a program P s.th.
SF ⊧ γ(P ) ↔ F

Converts the formula to CNF and basically converts each clause to a program rule
Clauses that meet a special criterion can be omitted in the rule conversion
Optional preprocessing where strong equivalence of the represented program is preserved

F P

¬p0 ∨ q
1 ∨ r

0
r ← p,not q

¬p1 ∨ q
1 ∨ r

1
not p ← not q,not r Rule can be omitted

¬s1 ∨ t
1 ∨ u

1
not s ← not t,not u

F Does not encode a logic program
¬p0 ∨ q

1 ∨ r
0
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LP-Interpolation – A Refinement of Craig Interpolation for (Formulas Encoding) Logic Programs

Definition. A Craig-Lyndon interpolant of F and G s.th. F ⊧ G is a formulaH s.th.
1. F ⊧ H2. H ⊧ G3. Voc(H) ⊆ Voc(F ) ∩ Voc(G), taking also polarity of predicate occurrences into account
Theorem: LP-Interpolation. Let F encode a logic program, and letG be s.th. Fun(F ) ⊆ Fun(G) and
SF ∧ F ⊧ SG → G. Then there exists a first-order formulaH , the LP-interpolant of F and G, s.th.
1. SF ∧ F ⊧ H2. H ⊧ SG → G3. Pred±(H) ⊆ S ∪ {+p1 ∣ +p0 ∈ S} ∪ {−p1 ∣ −p0 ∈ S}, where S = Pred±(SF ∧ F ) ∩Pred±(SG → G)4. Fun(H) ⊆ Fun(F )5. H encodes a logic program
Moreover, such anH can be effectively constructed via Craig-Lyndon interpolationapplied to SF ∧ F and SG → G

Proof. LetH ′ be a Craig-Lyndon interpolant of SF ∧F and SG → G. DefineH def
= H

′∧ rename0↦1(H ′)
12



Effective Projective Definability of Logic Programs

Theorem: Effective Projective Definability of Logic Programs. Let P and Q be programs andlet V ⊆ Pred (P ) ∪ Pred (Q) be a set of predicates. The existence of a program R s.th.
1. Pred (R) ⊆ V2. Fun(R) ⊆ Fun(P ) ∪ Fun(Q)3. P ∪R and P ∪Q are strongly equivalent
is expressible as entailment between two first-order formulas
Moreover, such a program R can be effectively constructed via Craig-Lyndon interpolationapplied to both sides of the entailment
Proof. The entailment that characterizes existence of a logic program R is

SP ∧ SQ ∧ γ(P ) ∧ γ(Q) ⊧ ¬SP ′ ∨ ¬SQ′ ∨ ¬γ(P ′) ∨ γ(Q′),
where the primed P

′ andQ
′ are like P andQ, except that predicates not in V are replaced byfresh predicates

If the entailment holds, we can construct a programR as follows: LetH be the LP-interpolantof γ(P ) ∧ γ(Q) and ¬γ(P ′) ∨ γ(Q′) and extract the program R fromH with our procedure
13



Effective Projective Definability of Logic Programs – Basic Examples

Q = p ← q, r
p; q ← r
q ← q, s

R = p ← r

V = {p, r}

P = p(X) ← q(X) Q = r(X) ← p(X)
r(X) ← q(X)

R = r(X) ← p(X)

V = {p, r}

P = ← p(X), q(X) Q = r(X) ← p(X),not q(X)
R = r(X) ← p(X)

V = {p, r}
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For given P,Q, V , find a program R s.th.
1. Pred (R) ⊆ V2. Fun(R) ⊆ Fun(P ) ∪ Fun(Q)3. P ∪R and P ∪Q are strongly equivalent



Effective Projective Definability of Logic Programs – “Schema Mapping” Examples

P = p(X) ← q(X),not r(X)
p(X) ← s(X)
not r(X); s(X) ← p(X)
q(X); s(X) ← p(X)

Q = t(X) ← p(X)
R = t(X) ← q(X),not r(X)

t(X) ← s(X)

V = {q, r, s, t}

Idea: P expresses a schema mapping from client predicate p to KB predicates q, r, sThe result R is a rewriting of the client query Q in terms of KB predicatesOnly the first two rules of P actually describe the mapping, the other two complete themEffects unfolding of pAlso works with R and Q switched and V = {p, t}: then it effects folding into p
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For given P,Q, V , find a program R s.th.
1. Pred (R) ⊆ V2. Fun(R) ⊆ Fun(P ) ∪ Fun(Q)3. P ∪R and P ∪Q are strongly equivalent



Constraining Positions of Predicates within Rules

Corollary: Position-Constrained Effective Projective
Definability of Logic Programs. Our definabilitytheorem holds in a strengthened variation wherethree sets V+, V+1, V− of predicates are given to theeffect that a predicate p can occur in the respectivecomponent of a rule of R only if it is a member of aset of predicates according to the following table

p is allowed in only if p is in
Positive heads V+Negative bodies V+ ∪ V+1Negative heads V−Positive bodies V−
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P = p ← q Q = r ← p
r ← q
q ← s

R = r ← p
q ← s

V+ = {p, q, r, s}
V+1 = {}
V− = {p, r, s}

P = p ← q Q =← q,not p
r ← q
s ← p

R = r ← q
s ← p

V+ = {q, r, s}
V+1 = {}
V− = {p, q, r, s}

P = p ← q
r ← p

Q = s ← not r
r ← q

R = s ← not r

V+ = {s}
V+1 = {r}
V− = {p, q, r, s}



Prototypical Implementation

Implemented in PIE (Proving, Interpolating, Eliminating) [W 2016], embedded in SWI-PrologCraig-Lyndon interpolation is done with first-order provers
CMProver Prover9[W 1992–] similar to PTTP, SETHEO, leanCoP + Prooftrans

Clausal tableau Binary resolution proof
Clausal tableau in cut normal form(semantic tree)

Clausal tableau in hyper form [W 2023](leaves = neg. literals)
Craig-Lyndon interpolation for clausal tableaux [W 2021]

Vampire and E do not emit gap-free resolution proofs suited for interpolation,but proof tasks underlying interpolation can be tried with any prover supporting TPTP FOFSimplifications are important at all stagesNice Skolemization is useful: ∀y P (y) ∧ ∀y Q(y) ∧ ∀y P ′(y) ∧ ∃x¬Q′(x)Not by default CNF trafos of PIE, Prover9, E, Vampire (but no problem for Vampire) 17



Prototypical Implementation – Hands-On

18



Agenda (I): Relate to Direct Interpolation for Non-Classical Logics

Related works: [Applications of] Craig interpolation and Beth definability for equilibrium logic,based on earlier (mostly existential) results on interpolation in non-classical logics[Gabbay/Pearce/Valverde 2011, Pearce/Valverde 2012]
The logic underlying strong equivalence is HT, aka Gödel’s G3 – does it have feasible interpolation?
Our LP-interpolation theorem can be rephrased in terms of interpolation for logic programs(see current version of implementation)
Can our approach be transferred to obtain a feasible interpolation method for HT/G3?
Known: Uniform interpolation for G3 [Baaz/Veith 1999]
In principle related, but apparently so far completely Beth-unaware: forgetting in ASP
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Agenda (II): Generalizations and Refinements

Safety (roughly: all variables of a rule have an occurence in the positive body)– related to range-restriction [W 2023]
Disallowing constants or function symbols– but Craig interpolation introduces existential quantifiers for “left-only” such symbols
Arithmetics, theories, aggregation– current topics in verification of strong equivalence
Restrictions on rule form (e.g. no negative head, a single positive head)– related to Horn [W 2023]
Transfer to completion-based program encodings
Hidden predicates (which may have an arbitrary extension in R)– relative equivalence [Lin 2002], projected answer sets [Eiter et al. 2005], external behavior[Fandinno et al. 2023]
“Schema mappings” with the involved completion– possibly related to [Toman/Wedell 2023]
Applying our encoding/decoding to program simplification via first-order formula simplification
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Conclusion – Generalizing Summary

Task. For given programs P,Q and vocabulary V (a set of predicates)compute a program R in V s.th. P ∪R is strongly equivalent to P ∪Q

P ⊧ Q ↔ R

P ∧Q ⊧ R ⊧ P
′
→ Q

′

Equivalence notion in the target logic (strong equivalence), expressed as classical equivalence
• Target expressions are encoded as classical representation(of a logic with two worlds, p0 and p

1 for each p)• The classical equivalence is modulo certain axioms (p0 → p
1)

Encoded target expressions can be decoded, modulo the equivalence notion,without enriching the vocabulary
Classical Craig interpolation on encoded target expressions plus postprocessing
yields an encoded target expression
Together with the decoding we obtain a projective Beth property for the target logic
I.e. we can synthesize target expressions R from given target expressions P,Q and vocabulary V
Effectivity, feasibility, also practical, is inherited from Craig interpolation for classical logic
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On the Decoding Procedure

For given F that encodes a program (SF ∧ F ⊧ rename0↦1(F )), returns a program P s.th.
SF ⊧ γ(P ) ↔ F

Converts the formula to CNF and basically converts each clause to a program rule
Clauses that meet a special criterion can be omitted in the rule conversion
Optional preprocessing where strong equivalence of the represented program is preserved

F P

¬p0 ∨ q
1 ∨ r

0
r ← p,not q

¬p1 ∨ q
1 ∨ r

1
not p ← not q,not r Rule can be omitted

¬s1 ∨ t
1 ∨ u

1
not s ← not t,not u

F Does not encode a logic program
¬p0 ∨ q

1 ∨ r
0

28



The Decoding Procedure

Procedure: Extracting a Program from a Formula.
1. Bring the input F into a CNF ∀x (M0 ∧M1) s.th.• all clauses ofM0 have a 0-literal and• all clauses ofM1 have only 1-literals
2. PartitionM1 intoM

′
1,M

′′
1 s.th.

∀x rename0↦1(M0) ⊧ ∀xM
′′
1

E.g. takeM ′
1 = M1 andM

′′
1 = ⊤

Or place each clause C inM1 intoM
′′
1 orM ′

1depending on whether there is aD inM0 s.th.
rename0↦1(D) subsumes C

3. Return as P the set of rules
A;not B ← C,not D for each clause
C

0 ∧ ¬D1
→ A

0 ∨ ¬B1 inM0 ∧M
′
1

Option: Preprocess the input F to F
′ s.th.

Voc(F ′) ⊆ Voc(F ) and SF ⊧ F
′
↔ F

29

F P

¬p0 ∨ q
1 ∨ r

0
r ← p,not q

¬p1 ∨ q
1 ∨ r

1
not p ← not q,not r

¬s1 ∨ t
1 ∨ u

1
not s ← not t,not u

C1 = ¬p0 ∨ q
1 ∨ r

0
R1 = r ← p,not q

C2 = ¬p0 ∨ q
1 ∨ r

1
R2 = ← p,not q,not r

C3 = ¬p1 ∨ q
1 ∨ r

1

By preprocessing F we can eliminate C2The rule for C3 can be omitted.


