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Thesis – Substantiated Here

Provers based on the connection method can be much much stronger than currently believed

Corpus TPTPCD 196Rating < 1.0 189
Connection Method / Clausal Tableaux

leanCoP 2.1 72CM-CT provers in TPTP 76 2 SETHEOs, SATCoP, lazyCoP (TPTP 8.00)CMProver (9 cfgs) 96All CM-CT provers 96
SGCD – Structure Generating theorem proving for Condensed Detachment

SGCD (4 cfgs) 176
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Background: CM-CT Provers

Can be described as based on
• Connection method (CM)• Clausal tableaux (CT)• Model elimination
With systems such as
• PTTP (Prolog Technology Theorem Prover) [Stickel 1988]• SETHEO [Letz, Bibel et al. 1992]• CMProver [CW 1992]• leanCoP [Otten, Bibel 2003]• nanoCoP, ileanCoP, MleanCoP, FEMaLeCoP, rlCoP, plCoP, lazyCoP, SATCoP, . . .
Enumerating proof trees (instead of formulas like resolution)
• Each proof structure appears there at most once• Interwoven with unification of formulas associated with nodes• Wrapped in iterative deepening upon size or height of the proof tree
Goal-driven: top node initialized with Skolemized goal
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Structure-Generating Proving: Core Ideas

Enumerating proof trees, interwoven with unification of formulas associated with nodes
Let’s take this as starting point

Wrapped in iterative deepening upon size or height of the proof tree
This may be refined to grouping sets of structures into “levels”

Goal-driven: top node initialized with Skolemized goal
Let’s combine this with axiom-driven operation, where proof-lemma pairs are enumerated

Let’s start in a simplified setting where proof structures are available in a nice form
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Formulas and Proof Structure Terms: Condensed Detachment (CD)

Due to Carew A. Meredith (1904–1976) – mid 1950s
A D-term (full binary tree) proves for given axioms its
most general theorem (MGT), determined by
unification
CD problems as first-order ATP problems

Detachment axiom P(i(x, y)) ∧ P(x) → P(y)Proper axioms positive unitsGoal a negative ground unit
Horn, first-order, binary function symbol, cyclicpredicate dependency
A possible inference system for CD

1 ∶ P(t)fresh-copy for the axiom P(t)

d1 ∶ P(i(x, y)) d2 ∶ P(x′)
D(d1, d2) ∶ P(y)mgu(x, x′)

Hyperresolution also provides an inference system
Relation to CM and more: [CW, Bibel CADE 21; 2023] 7



A Proof in Different Representations
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Pi(i(ipq, r), i(irp, isp))∧ (Px ∧ Pixy → Py) → Pi(ipq, i(iqr, ipr))
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Size Measures for D-Terms (Full Binary Trees)

Tree size: 8
Height: 4
Compacted size: 5 – size of minimal DAG; number of distinct compound subterms

n 0 1 2 3 4 5 6
Tree size OEIS:A000108 1 1 2 5 14 42 132Height OEIS:A001699 1 1 3 21 651 457,653 210,065,930,571Compacted size OEIS:A254789 1 1 3 15 111 1,119 14,487

Growth of the number of distinct D-terms for different size measures
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Term representation

D(D(1,D(1, 1)),D(1,D(D(1, 1)),D(D(1, 1), 1)))

Representation by factor equations

2 = D(1, 1)
3 = D(1, 2)
4 = D(3,D(3,D(2, 1)))

https://oeis.org/A000108
https://oeis.org/A001699
https://oeis.org/A254789
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SGCD – Structure-Generating Theorem Proving for CD

Assume a Prolog predicate that enumerates proof-MGT pairs for a given level
enum_dterm_mgt_pairs(+Level, ?DTerm, ?Formula)

Level characterizations can be e.g. tree size or height of the D-term
Depending on the parameter instantiation the predicate serves different purposes

enum_dterm_mgt_pairs(+Level, +Dterm, +Formula) verifying a proof
enum_dterm_mgt_pairs(+Level, +Dterm, −Formula) computing the MGT
enum_dterm_mgt_pairs(+Level, −Dterm, +Formula) proving a formula (goal-driven)
enum_dterm_mgt_pairs(+Level, −Dterm, −Formula) generating lemmas (axiom-driven)

SGCD embeds it in nested loops of goal-
and axiom-driven phases
Its implementation can access a cacheof solutions in lower levels
The cache can be heuristically restricted
on the basis of MGTs
Optional: “lemma injection”: initializing thecache with given lemmas
Optional: “hybrid levels”: different levelcharacterizations for goal- and axiom-driven 11

Cache ∶= ∅;
for l ∶= 0 tomaxLevel do

form ∶= l to l + preAddMaxLevel do
enum_dterm_mgt_pairs(m,d, goal);
throw proof_found(d)

N ∶= {⟨l, d, f ⟩ ∣ enum_dterm_mgt_pairs(l, d, f)};
ifN = ∅ then throw exhausted;
Cache ∶= merge_news_into_cache(N,Cache)



SGCD – Example of the Core Predicate for Maximal (“Up-To”) Tree Size as Level Characterization

enum_dterm_mgt_pair(N, D, F) :-
enum_dterm_mgt_pair_1(N, _, D, F).

enum_dterm_mgt_pair_1(N, N, I, F) :-
id_axiom(I, F), % Mapping of constant D-terms to axioms
acyclic_term(F). % Occurs check

enum_dterm_mgt_pair_1(N, N1, d(A,B), FY) :-
N > 0,
N2 is N - 1,

% enum_dterm_mgt_pair_1(N2, N3, A, i(FX,FY)),
% enum_dterm_mgt_pair_1(N3, N1, B, FX).

pre_enum_dterm_mgt_pair_1(N2, N3, A, i(FX,FY)),
pre_enum_dterm_mgt_pair_1(N3, N1, B, FX).

pre_enum_dterm_mgt_pair_1(N, N1, D, F) :-
cached_level(N),
!,
level_solution(N2, F, D),
N >= N2,
acyclic_term(F),
N1 is N-N2.

pre_enum_dterm_mgt_pair_1(N, N1, D, F) :-
enum_dterm_mgt_pair_1(N, N1, D, F).
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Implementation Aspects

Implemented in SWI-Prolog
Part of CD Tools, utilizes PIE
CD Tools implements many concepts from [CW, Bibel 2023], which are available to SGCD e.g. for heuristicrestrictions, e.g, regularity notions, variations of organic, n-simplification
Free software http://cs.christophwernhard.com/cdtools
Also tables and logs of experiments can be found on this website
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SGCD on the 196 TPTPCD Problems

Corpus TPTPCD: Of the 206 CD problems in the TPTP exclude those 10 with: status satisfiable; detachmentwith disj. and neg.; goal theorem not an atom
Corpus TPTPCD 196Rating < 1.0 189Rating = 0.0 151
Prover9 168
LeanCoP 72CM-CT Provers 96
SGCD (4 cfgs) 176SGCD Rtg = 0.0 151SGCD cfg-1 (tree size, cache 1000, goal-dr 2) 165SGCD cfg-2 (height, cache 1000, goal-dr 2) 109SGCD cfg-3 (tree size, cache 3000, trm lim, goal-dr 1) 80SGCD cfg-7 (tree size, cache 3000, goal-dr 2) 161
SGCD purely goal-driven (2 cfgs) 89SGCD purely goal-driven, tree size 81SGCD purely goal-driven, height 65
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SGCD for Theorem Finding

Łukasiewicz’ 68 theses were studied extensively by Wos with OTTER in the 1990s,they are now in the TPTP
With a certain configuration of heuristics, SGCD proves all of them in a single axiom-driven run in 2.5 min
OTTER solved all in a single run after the introduction of weight templates
SGCD’s proofs tend to larger compacted size but smaller tree size than those obtained by Wos in carefullycrafted settings
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SGCD Finds Small Proofs (1)

C-avg C-med T-avg T-med H-avg H-med
SGCD 4 config 15.83 13 29.36 17 8.52 6Prover9 28.37 21 194,736.83 93 16.90 13
SGCD 4 config, after n-simplif. 15.80 12 29.36 17 8.52 6Prover9, after n-simplif. 23.09 18 19,501.99 40 13.69 12

Proof sizes for the 163 problems provable by SGCD and Prover9
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SGCD Finds Small Proofs (2)

CCS, another prover in CD tools finds proofs with guaranteed minimal compacted size by enumeration uponcompacted size
This succeeds for 44% of the TPTPCD problems
For many of the other problems SGCD with PSP-level as level characterization finds proofs with apparentlysmall compacted size
A particular example is LCL038-1, for Łukasiewicz’s single axiom where a particular short proof is found

C-size T-size Height
SGCD PSP-level 22 64 22Meredith 31 491 29Łukasiewicz 32 435 29Prover9 after reductions by CD Tools 84 8,200 36Prover9 93 216,094 40

Sizes of proofs of LCL038-1

18



The “Proof-Subproof” (PSP) Level Characterization

A principle observed in many steps of a proof by Łukasiewicz and a variation by Meredith[CW, Bibel CADE 2021] can be turned into a level characterization for SGCD
D-terms in PSP-level n+ 1 are those D-terms where
• one argument term is in PSP-level n• and the other argument is a subterm of that term

Enumeration by PSP-level
• is incomplete (some D-terms are omitted)• has features of DAG enumeration: D-terms in PSP-level n have compacted size n
Applications of enumeration by PSP-level
• Solves ”Łukasiewicz’s single axiom” LCL038-1 with a short proof; often leads to proofs with smallcompacted size• Generally often applicableCorpus TPTPCD 196SGCD (4 cfgs) 176SGCD PSP-level (5 cfgs) 153• Very useful for generating lemmas input to other provers [Rawson, CW, Zombori, Bibel TABLEAUX 2023]• Key technique to solve ”Meredith’s single axiom” LCL073-1 [RWZB TABLEAUX 2023]
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Issue: Stronger Proof Compressions

From [Lohrey et al. 2013] (on tree compression)
So far we considered as lemmas units whose proof is a D-term;they are shared in the unique minimal DAG representation of the overall D-term
In more general forms of lemmas trees “with holes” are shared
• Horn clause lemmas (the body atoms correspond to the “holes”);obtained through binary resolution with the detachment clause• Tree grammars with variables (correspondoing to the “holes”) in nonterminals• Combinators in D-terms (“holes” are mapped to subtree sharing in DAGs) [CW PAAR 2022]
The connection structure calculus [Eder 1989] considers such compressions; it can simulate resolution
The combinator approach was implemented for first-order Horn [CW PAAR 2022]; it can simulate resolution
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Issue: Stronger Proof Compressions – Some Open Questions

The stronger compressions seem to require enumeration by compacted size (DAG enumeration)
• Only a small DAG proof justifies the application of a compression (involvement of a combinator)• How to combine goal- and axiom-driven modes for enumeration by compacted size?For compacted size, a subproof can not be globally assigned a “level”, but depending on context – if italready appeared in the proof under construction, it can be attached “for free”
How important are the strong compressions in practice?
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Combinatory Compression of Proof Structures in a Nutshell

Goal: P(f8(a)) Axioms: 1 P(a)
2 P(x) → P(f(x))

A single structure proves Goal from Axioms:
2(2(2(2(2(2(2(21))))))) (⋆)

Compound subterms are 21, 2(21), 2(2(21)), . . . each occur once
B def

= λxyz . x(yz)
Bxyz → x(yz)

CL-term: Proof structure term in which combinators are permitted
B(B22)(B22)(B(B22)(B22)1) (⋆⋆)

(⋆⋆) normalizes with→ to (⋆)(⋆⋆) has multiple occurrences of B22 and B(B22)(B22), reflected in multiple incomingedges in its minimal DAGIn factors B has 2 arguments: → is not applicable within a factor
(⋆⋆) has compacted size 6, where (⋆) has 8; generalizes to goals P(f2n (a)) with n ≥ 3:CL-term with B has compacted size 2nFor determining the MGT of a CL-term, combinators are taken like axiom identifiers,denoting their principal type 23
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Enumeration by Compacted Size: Blueprint for the Compiled Code

gen_d_mgt_upto_csize(N, D, F) :-
gen_d_mgt_upto_csize_1(N, D, _, [], _, F).

gen_d_mgt_upto_csize_1(N, I, N, L, L, F) :-
axiom_id(F, I),
acyclic_term(F).

gen_d_mgt_upto_csize_1(N, d(A,B), N1, L, [d(A,B)|L1], FY) :-
N > 0,
N0 is N-1,
gen_d_mgt_upto_csize_2(N0, A, N2, L, L2, i(FX,FY)),
gen_d_mgt_upto_csize_2(N2, B, N1, L2, L1, FX).

gen_d_mgt_upto_csize_2(N, D, N, L, L, F) :-
member(D, L),
d_mgt(D, F),
acyclic_term(F).

gen_d_mgt_upto_csize_2(N, D, N1, L, L1, F) :-
gen_d_mgt_upto_csize_1(N, D, N1, L, L1, F),
not_abs_contains(L, D).

Improvements in the actual compilation results:
No re-computation of the MGT of lemmas, just copying the lemmasAccess to proper axioms and combinators is fully “unrolled” (not via axiom_id/2)Different predicates for each arity type 25



Issue: Systematization of Level Characterizations

n 0 1 2 3 4 5 6
Tree size OEIS:A000108 1 1 2 5 14 42 132Height OEIS:A001699 1 1 3 21 651 457,653 210,065,930,571Compacted size OEIS:A254789 1 1 3 15 111 1,119 14,487
∣PSP-level(n)∣ OEIS:A001147 1 1 3 15 105 945 10,395

Disjoint vs cumulative levels: e.g. tree size vs maximal tree size
Interplay of levels with the subterm relationship (subterms required in a lower level?)
Gaps: some intermediate level may have no member with MGT
Incompleteness: e.g. PSP-level
“Context-dependency”: why exactly is compacted size not suited for SGCD
Is PSP-level a “context-independent” fragment of compacted size
Can level characterizations be combined; beyond portfolio; beyond different ones for goal- and axiom-driven?
Can heuristic limitations be considered in level characterizations?
Relationship to semi-naive evaluation: delta-predicates keep preceding level for a triggering effect
For a single problem we do not have decomposition into independent subproblems (subgoals may sharevariables) – can we get decomposability when considering whole sets of problems (levels) instead?(Computing a level via computing smaller levels that are independent from each other) 26
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Issue: Generalization to Full First-Order Logic

Bases
• Witness theory [Rezus 2020]• Finite axiomatization of predicate calculus [Megill 1995] (?)• CM, connection structure calculus
CCS works for Horn
Resolution proof translations
Equality handling should be possible on the basis of the MGTs, like the heuristic restrictions
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