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Abstract. For relational monadic formulas (the Löwenheim class) sec-
ond-order quantifier elimination, which is closely related to computation
of uniform interpolants, forgetting and projection, always succeeds. The
decidability proof for this class by Behmann from 1922 explicitly pro-
ceeds by elimination with equivalence preserving formula rewriting. We
reconstruct Behmann’s method, relate it to the modern DLS elimination
algorithm and show some applications where the essential monadicity be-
comes apparent only at second sight. In particular, deciding ALCOQH
knowledge bases, elimination in DL-Lite knowledge bases, and the justi-
fication of the success of elimination methods for Sahlqvist formulas.

1 Introduction

A procedure for second-order quantifier elimination takes a second-order formula
as input and yields an equivalent first-order formula in which the quantified pred-
icates do no longer occur, and in which also no new predicates, constants or free
variables are introduced. Obviously, on the basis of classical first-order logic this
is not possible in general. Closely related are uniform interpolation and projec-
tion, where the predicates that are not eliminated are made explicit, forgetting
where elimination of particular ground atoms is possible, and literal forgetting
which can apply to just the predicate occurrences with positive or negative po-
larity. These variants are often also based on a syntactic view, characterized in
terms of the set of consequences of the result formula instead of equivalence.

Second-order quantifier elimination and its variants have many applications
in knowledge processing, including ontology reuse, ontology analysis, logical dif-
ference, information hiding, computation of circumscription, abduction in logic
programming and view-based query processing [20,32,31,15,47,48]. It thus seems
useful to consider as a requirement of knowledge representation languages in ad-
dition to decidability also “eliminability”, that elimination of symbols succeeds.
If eliminating all symbols yields true or false, this implies decidability.

The two main approaches for second-order quantifier elimination with re-
spect to first-order logic are resolvent generation [19,18] and the direct methods,
where formulas are rewritten into a shape that immediately allows elimination
according to schematic equivalences such as Ackermann’s Lemma [1,15,18]. In
particular for modal and description logic some dedicated elimination methods
have been presented in explicit relation to these two approaches, e.g., [27,12,41],
while several others only in context of the considered special logic, e.g., [24,45,31].

The general characterization of formula classes that allow successful elimi-
nation is not yet thoroughly researched. Some of the mentioned methods and
investigations such as [11] give indications. Further subtle questions arise if not
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just the symbols in the result but also further properties – such as belonging
again to the input class – are taken into consideration.

In this paper, we approach that scenario from the viewpoint of a working
hypothesis that might be stated as “many applications are actually instances of
a modest subclass of first-order logic that allows elimination and is characterized
by a general criterion.” Consequences in perspective would be that the reducibil-
ity to the modest class provides explanations for the success of elimination, that
possibly interesting boundaries come to light when a feature is really inexpress-
ible in the modest class, that results apply in the context of first-order logic as a
general framework with many well developed techniques and allowing to embed
other logics, and that a modest class could facilitate efficient implementation.

A look back into history highlights the class of relational monadic formulas
as candidate of such a “modest class.” For its variants, we use the following
symbols: MON is the class of relational monadic formulas (also called Löwenheim
class), that is, the class of first-order formulas with nullary and unary predicates,
with individual constants but no other functions and without equality. MON= is
MON with equality. QMON and QMON= are MON and MON=, resp., extended
by second-order quantification upon predicates.

All of these classes are decidable. QMON= admits second-order quantifier
elimination, that is, there is an effective method to compute for a given QMON=

formula F an equivalent MON= formula F ′ in which all predicates are unquan-
tified predicates in F , as well as all constants and free variables are also in F . In
this sense MON= is closed under second-order quantifier elimination, which does
not hold for MON, since elimination applied to a QMON formula might intro-
duce equality. These results have been obtained rather early by Löwenheim [33],
Skolem [43] and Behmann [5]. The first documented use of Entscheidungsproblem
actually seems to be the registration of a talk by Behmann in 1921 [51,34]. We
focus here on Behmann’s decision procedure for several reasons: It aims at prac-
tical application, operating in a way that appears rather modern by equivalence
preserving formula rewriting. It provides a link between the decision problem
and elimination by the reduction of deciding satisfiability to successive elimina-
tion of all predicates. In addition, motivated by earlier works of Ernst Schröder,
the application to elimination problems on their own has been considered.

Behmann’s elimination procedure can be seen as an early instance of the
direct methods, where formulas are rewritten until subformulas with predicate
quantification match an elimination schema. In the case of DLS [15] this schema
is Ackermann’s Lemma, a side result of [1]. Actually, Ackermann acknowledged
that Behmann’s paper [5] was at its time the impetus for him to investigate the
elimination problem in depth (letter to Behmann, 29 Oct 1934, [6]). In modern
expositions of second-order quantifier elimination, e.g., [18], Behmann’s contri-
butions have so far been largely overlooked with exception of historic references
[14,41]. A comprehensive summary of the contributions is given in [49].

The rest of the paper is structured as follows: After fixing notational con-
ventions, we present a restoration of Behmann’s elimination method (Sect. 2)
and properties of second-order logic that will be useful in the sequel (Sect. 3).
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In Sect. 4 description logics are considered: It is shown that decidability of
ALCOQH knowledge bases can be polynomially reduced to decidability of re-
lational monadic formulas. With respect to elimination problems, related map-
pings are possible for description logics of the DL-Lite family. Some issues and
subtleties that arise for elimination via such mappings are discussed. In Sect. 5
direct methods with Ackermann’s Lemma are related to monadic techniques. A
possibility to improve DLS becomes apparent and it is shown that a condition
related to monadicity can serve as explanation for the success of methods based
on Ackermann’s Lemma. The success of the Sahlqvist-van Benthem substitu-
tion method and of DLS for computing first-order correspondence properties of
Sahlqvist formulas can be attributed to that property. Finally, related work is
discussed in Sect. 6 and concluding remarks are provided in Sect. 7. This report
is an extended version of [50].
Notational Conventions. We consider formulas constructed from atoms, con-
stant operators >, ⊥, the unary operator ¬, binary operators ∧,∨ and quan-
tifiers ∀,∃ with their usual meaning. The scope of quantifiers is understood as
extending as far to the right as possible. A subformula occurrence has in a given
formula positive (negative) polarity if it is in the scope of an even (odd) num-
ber of negations. Negated equality 6=, further binary operators→,←,↔, as well
as n-ary versions of ∧ and ∨ can be understood as meta-level notation. The
scope of n-ary operators in prefix notation is the immediate subformula to the
right. Counting quantifiers ∃≥n, where n ≥ 1, express existence of at least n
individuals. Two alternate expansions into first-order logic are as follows: Let
F [x] be a formula in which x possibly occurs free, let x1, . . . , xn be fresh vari-
ables, and let F [xi] denote F [x] with the free occurrences of x replaced by xi.
It then holds that ∃≥nxF [x] ≡ ∃x1 . . . ∃xn

∧
1≤i≤n F [xi] ∧

∧
i<j≤n xi 6= xj ≡

∀x1 . . . ∀xn−1∃xF [x] ∧
∧

1≤i<n x 6= xi. A Boolean combination of basic formulas
is a formula obtained from certain basic formulas and the operators >,⊥,¬,∧,∨.

2 Behmann’s Elimination Method
The core property shown in [5] can be stated as follows:
Proposition 1 (Predicate Elimination for MON=). There is an effective
method to compute from a given predicate p and MON= formula F a formula F ′

such that (1.) F ′ is a MON= formula, (2.) F ′ ≡ ∃pF , (3.) p does not occur in
F ′, (4.) All free variables, constants and predicates in F ′ do occur in F .
The condition that all predicates in F ′ occur there only in polarities in which
they also occur in F could also be added. The proposition implies that second-
order quantifier elimination can be successfully performed for QMON= with the
following procedure: Replace subformulas of the form ∀pG with ¬∃p¬G and
exhaustively rewrite subformulas of the form ∃pG where G is a MON= formula
(i.e., ∃pG is an innermost second-order quantification) to MON= formulas ac-
cording to Prop. 1. Satisfiability of a QMON= formula F can be decided by
applying this elimination method to

∃p1 . . . ∃pn ∃x1 . . . ∃xm ∃c1 . . . ∃ck F, (i)
where p1, . . . , pn are all predicates with free occurrences in F , x1, . . . , xm are the
free variables in F and c1, . . . , ck are the constants in F . The result is a MON=
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sentence without any predicates and constants but possibly with equality. It can
be transformed to a Boolean combination of basic formulas of the form ∃≥nx>,
which are satisfied by exactly those interpretations whose domain has at least n
members. A Boolean combination of such basic formulas is then either true for
all domain cardinalities with exception of a finite number or false for all domain
cardinalities with exception of a finite number. The respective cardinalities can
be read off easily from a representation in disjunctive normal form with ∃≥nx>
in the role of atoms: each satisfiable conjunction then justifies a series of numbers
with a lower limit or with lower as well as upper limits as domain cardinalities.
For sufficiently large finite and for all infinite domains the value of the sentence
is the same.

We now turn to the proof of Prop. 1 that is, to Behmann’s method for second-
order quantifier elimination by equivalence preserving formula rewriting. We
make here only the characteristic steps of the method precise (see [49] for a more
detailed account). For conversions that can be easily performed by rewriting with
well-known equivalences only the effect is indicated. Some of the equivalences
that are familiar from conversion to prenex form are now applied in the reverse
direction, since in Behmann’s method quantifiers are moved inward as far as
possible, until theirs scopes do no longer overlap. A less common equivalence
that is often applied is:

p(t) ≡ ∀x p(x) ∨ x 6= t, (ii)

for all constants or variables t different from x; dually p(t) ≡ ∃x p(x) ∧ x = t.
The actual elimination steps are justified by the following equivalence:

Proposition 2 (Basic Elimination Lemma). Let p be a unary predicate and
let F,G be first-order formulas with equality in which p does not occur. Then

∃p (∀xF ∨ p(x)) ∧ (∀xG ∨ ¬p(x)) ≡ ∀xF ∨G.

Formulas F and G in that proposition may contain free occurrences of x, which
are bound by the surrounding ∀x on both sides. The goal of the elimination
method is now to rewrite an input formula ∃pF , where F is a MON= formula,
such that all occurrences of quantification upon p match the left side of Prop. 2.

This is achieved by a conversion such that all subformulas starting with ∃p are
in a normalized form, called here Generalized Eliminationshauptform (Behmann
calls a simpler variant for inputs without equality Eliminationshauptform [main
form for elimination]). The following proposition shows this form and the con-
version from it to applicability of Prop. 2. The counting quantifier ∀<nx is used
there as shorthand for ¬∃≥nx¬:

Proposition 3 (From Generalized Eliminationshauptform to the Basic
Elimination Lemma). Let p be a unary predicate and let F be the formula

∃p
∧

1≤i≤a (∀x<ai Ai[x] ∨ p(x)) ∧
∧

1≤i≤b (∀x<bi Bi[x] ∨ ¬p(x)) ∧∧
1≤i≤c (∃x≥ci Ci[x] ∧ p(x)) ∧

∧
1≤i≤d (∃x≥di Di[x] ∧ ¬p(x)),

where a, b, c, d are natural numbers ≥ 0, for the referenced values of i the ai, bi,
ci, di are natural numbers ≥ 1, and the Ai[x], Bi[x], Ci[x], Di[x] are first-order
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formulas in which p does not occur. Then F is equivalent to

QG ∧ ∃p (∀xA[x] ∨ p(x)) ∧ (∀xB[x] ∨ ¬p(x)),
where Q is an existential quantifier prefix upon the following fresh variables:
xi1 . . . xi(ai−1), 1 ≤ i ≤ a; yi1 . . . yi(bi−1), 1 ≤ i ≤ b; ui1 . . . uici , 1 ≤ i ≤ c;
vi1 . . . vidi , 1 ≤ i ≤ d, where G =

∧
1≤i≤c, 1≤j≤ci(Ci[uij ] ∧

∧
j<k≤ci uij 6= uik) ∧∧

1≤i≤d, 1≤j≤di(Di[vij ] ∧
∧
j<k≤di vij , 6= vik), with Ci[uij ] and Di[vij ] denoting

Ci[x] and Di[x] after replacing all free occurrences of x by uij and vij, respec-
tively, and where

A[x] =
∧

1≤i≤a(Ai[x] ∨
∨

1≤j<ai x = xij) ∧
∧

1≤i≤c, 1≤j≤ci x 6= uij , and
B[x] =

∧
1≤i≤b(Bi[x] ∨

∨
1≤j<bi x = yij) ∧

∧
1≤i≤d, 1≤j≤di x 6= vij .

The proof of Prop. 3 makes use of the different ways to expand counting quan-
tifiers shown at the end of Sect. 1, such that for universal as well as existential
counting quantifiers existential variables are produced which can be moved in
front of the existential predicate quantifier. For example, ∀x<ai Ai[x] ∨ p(x) ≡
∃xi1 . . . ∃xi(ai−1)∀x (Ai[x] ∨

∨
1≤j<ai x = xij) ∨ p(x) and ∃≥cxCi[x] ∧ p(x) ≡

∃ui1 . . . ∃uic
∧

1≤j≤c(Ci[uij ] ∧
∧
j<k≤c uij 6= uik) ∧

∧
1≤j≤c(∀xx 6= uij ∨ p(x)).

For inputs without equality, the Eliminationshauptform is sufficient:

∃p
∧

1≤i≤a (∀xAi[x] ∨ p(x)) ∧
∧

1≤i≤b (∀xBi[x] ∨ ¬p(x)) ∧∧
1≤i≤c (∃xCi[x] ∧ p(x)) ∧

∧
1≤i≤d (∃xDi[x] ∧ ¬p(x)),

(iii)

It is equivalent to

∃u1 . . . ∃uc∃v1 . . . ∃vd
∧

1≤i≤c Ci[ui] ∧
∧

1≤i≤dDi[vi] ∧
∃p ∀x ((

∧
1≤i≤aAi[x] ∧

∧
1≤i≤c x 6= ui) ∨ p(x)) ∧

∀x ((
∧

1≤i≤bBi[x] ∧
∧

1≤i≤d x 6= vi) ∨ ¬p(x)),
(iv)

where u1, . . . , uc and v1, . . . , vd are fresh variables. The result of eliminating p
according to Prop. 2 then can be further rewritten to:

(∀x
∧

1≤i≤aAi[x] ∨
∧

1≤i≤bBi[x]) ∧
∃u1 . . . ∃uc∃v1 . . . ∃vd

∧
1≤i≤c, 1≤j≤d ui 6= vj ∧∧

1≤i≤c(Ci[ui] ∧
∧

1≤j≤bBj [ui]) ∧
∧

1≤i≤d(Di[vi] ∧
∧

1≤j≤aAj [vi]),

(v)

where Ai[t], Bi[t], Ci[t], Di[t] denote Ai[x], Bi[x], Ci[x], Di[x], respectively, with
all free occurrences of x replaced by t. Equality enters in preparation of the
form (iii) by rewriting occurrences of p with constant argument by (ii) and
through handling existential quantifiers in proceeding from (iii) to (iv). The
introduced equality literals actually either have a constant or two existential
variables as arguments, implying that the simpler variant without dedicated
equality handling is sufficient for elimination in formulas ∃p1 . . . ∃pn F where F
is a MON formula (Behmann shows a special translation which is exponential in
n for this case).

The conversion of ∃pF to a form where all subformulas starting with ∃p
match the Generalized Eliminationshauptform of Prop. 3 proceeds in two steps.
First the MON= formula F is converted to a form where the quantifiers of
instance variables are propagated inward such that their scopes do not over-
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lap. We call such forms here innex as suggested by Behmann.1 Achieving this
form requires potentially expensive rewritings, in particular the distribution of
conjunction over disjunction and vice versa, if this can effect further narrow-
ing of quantifier scopes. Consider for example: ∀x p(x) ∨ (q(x) ∧ ∃y r(y)) ≡
∀x (p(x)∨ q(x))∧ (p(x)∨∃y r(y)) ≡ (∀x p(x)∨ q(x))∧ ((∀x p(x))∨ (∃y r(y))). In
automated reasoning, forms where quantifiers are propagated inward have also
been considered, e.g. [16,37], but typically just as preprocessing operations, which
would preclude the required expensive operations. In a variant of Behmann’s
method by Quine [38], the innex form is achieved by exhaustively rewriting in-
nermost formulas with the following equivalence, shown here in dual variants:

∃xF [G] ≡ (G ∨ ∃xF [⊥]) ∧ (¬G ∨ ∃xF [>]), (vi)
∀xF [G] ≡ (G ∧ ∀xF [>]) ∨ (¬G ∧ ∀xF [⊥]), (vii)

where F [G] is a first-order formula with occurrences of a subformula G in which
x does not occur free and whose free variables are not in scope of a quantifier
within F [G]. Formulas F [>] and F [⊥] denote F [G] with all the occurrences
of G replaced by > or ⊥, respectively. Variant (vii) is a generalization of the
well-known propositional Shannon expansion.

In presence of equality, the conversion to innex form introduces counting
quantifiers by rewriting formulas of the form (viii) below to either (ix) or (x):
Let F [x] be a first-order formula in which variable x possibly occurs free, let
T = {t1, . . . , tn} be an ordered set of n distinct constants or variables which are
different from x and which do not occur in F [x]. Let F [t] denote F [x] with all
free occurrences of x replaced by t. Then:

∃xF [x] ∧
∧

1≤i≤n x 6= ti (viii)

≡
∨

1≤m≤n((∃≥mxF [x]) ∧ AUX(m)) ∨ ∃≥n+1xF [x] (ix)

≡ (∃≥1xF [x]) ∧
∧

1≤m≤n((∃≥m+1xF [x]) ∨ AUX(m)), (x)

where AUX(m) stands for
∧
S⊆T,|S|=m(

∨
t∈S ¬F [t] ∨

∨
ti,tj∈S,i<j ti = tj). For

example: ∃x p(x)∧x 6= a∧x 6= b ≡ ((∃≥1x p(x))∧¬p(a)∧¬p(b))∨((∃≥2x p(x))∧
(¬p(a) ∨ ¬p(b) ∨ a = b)) ∨ ∃≥3x p(x) ≡ ∃≥1x p(x) ∧ ((∃≥2x p(x)) ∨ (¬p(a) ∧
¬p(b))) ∧ ((∃≥3x p(x)) ∨ ¬p(a) ∨ ¬p(b) ∨ a = b).

The result of the innex conversion with respect to quantifiers upon instance
variables is captured in the following proposition:
Proposition 4 (Counting Quantifier Innex Form for MON= Formulas).
There is an effective method to compute from a given MON= formula F a for-
mula F ′ such that: (1.) F ′ is a Boolean combination of basic formulas of the
form: (a) p, where p is a nullary predicate, (b) p(t), where p is a unary predicate
and t is a constant or an variable, (c) t = s, where each of t, s is a constant or
a variable, (d) ∃≥nx

∧
1≤i≤m Li[x], where n ≥ 1, m ≥ 0 and the Li[x] are pair-

wise different and pairwise non-complementary positive or negative literals with
a unary predicate applied to the variable x. (2.) F ′ ≡ F . (3.) All free variables,
constants and predicates in F ′ do occur in F .

1 Letter to Church, 30 Jan 1959 [6, Kasten 1, I 11].
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If the given formula F is without equality, the allowed basic formulas can be
strengthened by excluding the case t = s (c) and restricting the case (d) to n = 1,
such that the counting quantifier can be considered as standard quantifier.

The second step in converting ∃pF leads from ∃pF ′, where F ′ is a Boolean
combination according to Prop. 4 to a formula where all subformulas starting
with ∃p match the Generalized Eliminationshauptform of Prop. 3. This can be
achieved by first moving negation in F ′ inward followed by replacing formulas
of the form ¬∃≥nx

∧
1≤i≤m Li[x] with ∀<nx

∨
1≤i≤m Li[x], where L denotes the

complement of literal L. Then ∃p is propagated inward with the same technique
that had been applied to first-order quantifiers: ∃p is distributed over disjunction,
conjunctions are reordered such that conjuncts without p can be moved out of
its scope, and – the potentially expensive – distribution of conjunction over
disjunction is applied if that enables further distribution of ∃p over disjunction.

3 Useful Second-Order Properties
The use of transformations that introduce auxiliary definitions, like the Tseitin
and Plaisted-Greenbaum encoding, is common practice to obtain small equi-
satisfiable conjunctive normal forms. Second-order quantification allows to un-
derstand the introduction and elimination of such definitions as equivalence pre-
serving operations, with Ackermann’s Lemma as a special case. The more fine
grained account of semantics (instead of just equi-satisfiability) justifies the ap-
plication of these techniques in elimination tasks. We compile these principles
here for the case where the defined/eliminated predicates are unary.

Unless specially noted, we consider here formulas of first-order logic with
equality. If p does not occur in F , then by Prop. 2 it holds that ∃p ∀x p(x) ↔
F ≡ >. This allows to derive the following proposition:
Proposition 5 (Introduction and Elimination of Definitions). Let p be a
unary predicate, let x be an variable and let G[x] be a formula in which p does not
occur. For a constant or variable t, let G[t] denote G[x] with all free occurrences
of x replaced by t. Let F [G[t1], . . . , G[tn]] be a formula in which p does not occur
and which has n occurrences of subformulas, instantiated with G[t1], . . . , G[tn],
respectively, neither of them in a context where a variable that occurs free in
G[x] is bound. Let F [p(t1), . . . , p(tn)] denote the same formula with the indicated
occurrences G[ti] replaced by p(ti). Then

F [G[t1], . . . , G[tn]] ≡ ∃p (∀x p(x)↔ G[x]) ∧ F [p(t1), . . . , p(tn)].

Prop. 5 can be applied from left to right to introduce auxiliary predicates p and
from right to left to expand them, by replacing all occurrences of p with their
definientia and then dropping the definition. If p occurs in F [p(t1), . . . , p(tn)]
just with, say, positive polarity, then ∃p (∀x p(x)↔ G[x])∧F [p(t1), . . . , p(tn)] ≡
∃p (∀x p(x)→ G[x])∧ F [p(t1), . . . , p(tn)]. This leads to Ackermann’sLemma [1]:
Proposition 6 (Ackermann’s Lemma). Assume the setting of Prop. 5 and
that all the indicated subformula occurrences in F [G[t1], . . . , G[tn]] (or, equiva-
lently, in F [p(t1), . . . , p(tn)]) have the same polarity P . Then
∃p (∀x p(x)→ G[x]) ∧ F [p(t1), . . . , p(tn)] ≡ F [G[t1], . . . , G[tn]], if P is positive.
∃p (∀x p(x)← G[x]) ∧ F [p(t1), . . . , p(tn)] ≡ F [G[t1], . . . , G[tn]], if P is negative.
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The Basic Elimination Lemma Prop. 2 is obviously an instance of Ackermann’s
Lemma. Vice versa, Ackermann’s Lemma can be proven such that the only
elimination step is performed according to Prop. 2.

In [2], a short sequel to [1], Ackermann shows a precondition which allows
to move existential predicate quantification to the right of universal individual
quantification, where the arity of the quantified predicate is reduced:
Proposition 7 (Ackermann’s Quantifier Switching). Let p be a predicate
with arity n+1, where n ≥ 0. Let F = F [p(x, t11, . . . , t1n), . . . , p(x, tm1, . . . , tmn)],
where m ≥ 1, be a formula of second-order logic in which p has the exactly m
indicated occurrences. Assume further that p and x occur only free in F . Let q
be a predicate with arity n that does not occur in F and let F [q(t11, . . . , t1n), . . . ,
q(tm1, . . . , tmn)] denote F with each occurrence p(x, tij , . . . , tij) of p replaced by
q(tij , . . . , tij), for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Under the assumption of the axiom of
choice it then holds that

∃p∀xF [p(x, t11, . . . , t1n), . . . , p(x, tm1, . . . , tmn)]
≡ ∀x∃q F [q(t11, . . . , t1n), . . . , q(tm1, . . . , tmn)].

Ackermann applies this equivalence in [2] to avoid Skolemization and to convert
formulas such that monadic techniques or Ackermann’s Lemma become appli-
cable. Van Benthem [7, p. 211] mentions this equivalence with application from
right to left to achieve prenex form w.r.t. second-order quantifiers.

4 Hidden Monadicity in Description Logics
The second-order properties compiled in Sect. 3 give us a toolkit to convert a
knowledge base (KB), i.e., a TBox combined with an ABox, in the expressive
description logic (DL) ALCOQH (ALC with nominals, qualified number restric-
tions and subroles) to an equi-satisfiable QMON= formula. Given the decidability
of QMON= formulas, this provides a very simple proof of the decidability of the
description logic. It also follows that any method to decide QMON= formulas
provides a decision method for the DL.

It is well-know that for many DLs, includingALCOQH, a KB can be straight-
forwardly translated into a first-order formula (e.g., [40,23]) based on the stan-
dard translation of modal logics (e.g., [8]). We call this representation of a DL KB
its standard first-order translation. It captures not just satisfiability but the full
semantics of the KB. The standard first-order translation can be converted to a
generalized conjunctive normal form, where the role of literals is played by basic
formulas of certain forms. A structural normal form conversion, which involves
introduction of auxiliary predicate definitions according to Prop. 5 can prevent
the blow-up through distribution of disjunction over conjunction, can ensure
that variables are introduced only in a limited way and can effect further nor-
malization. If the translation proceeds by expanding equivalences corresponding
to definitional TBox axioms into implications and conversion to negation nor-
mal form, Ackermann’s Lemma (6) is sufficient to justify the introduction of the
auxiliary predicates, corresponding to the Plaisted-Greenbaum encoding. (See
[23] for a thorough presentation of such structure preserving translations of de-
scription logics into specific decidable first-order fragments.) For the standard



Hidden Monadicity in Description Logics 9

Table 1. Forms of basic formulas in DL normalizations. The symbols c, d and r
match unary or binary predicates, respectively. Variables are understood literally
as shown.

Form Inducing DL construct

1. c(x) atomic concept, ABox assertion
2. ¬c(x) atomic concept
3. ∃y r(x, y) ∧ d(y) qualified existential restriction
4. ∀y ¬r(x, y) ∨ d(y) qualified value restriction
5. x = a nominal
6. x 6= a nominal, ABox assertion
7. r(x, a) ABox assertion
8. ∀y ¬r(x, y) ∨ r(x, y) subrole
9. ∃≥ny r(x, y) ∧ d(y) qualified number restriction

10. ¬(∃≥ny r(x, y) ∧ ¬d(y)) qualified number restriction

first-order translation of an ALCOQH KB this normalization yields an equiv-
alent second-order formula ∃d1 . . . ∃dk ∀xF , where d1, . . . , dk are fresh unary
auxiliary predicates and F is a first-order conjunction of disjunctions of basic
formulas of the forms shown in Table 1.

In the conversion of ABox assertions equivalence (ii) is involved. The counting
quantifiers can be considered as abbreviations for formulas as shown at the end
of Sect. 1. The translation ∃d1 . . . ∃dk ∀xF is equi-satisfiable with the following
second-order formula:

∃c1 . . . ∃cn ∃r1 . . . ∃rm ∃d1 . . . ∃dk ∀xF, (xi)

where c1, . . . , cn are the unary predicates in F with exception of the d1, . . . , dk
(corresponding to names of atomic concepts in the KB) and r1, . . . , rm are the
binary predicates in F (corresponding to role names in the KB). The predicate
quantifiers can be reordered such that ∃r1 . . . ∃rm immediately precedes ∀x. Since
all occurrences of r1, . . . , rm in F have x as first argument, by Prop. 7 formula (xi)
is equivalent to

∃c1 . . . ∃cn ∃d1 . . . ∃dk ∀x∃r′1 . . . ∃r′m F ′, (xii)

where the r′1, . . . , r
′
m are fresh unary predicates and F ′ is obtained from F by

replacing for all i ∈ {1, . . . ,m} all occurrences of the form ri(x, t), where t is
some term, with r′i(t).

Formula (xii) is a QMON= formula. If no number restrictions are involved,
the effort required by this translation is linear in the size of the original KB.
Otherwise, the expansion of the counting quantifiers into first-order logic has to
be taken into account, whose size is linear in the cardinality argument of the
quantifier. The following theorem statement summarizes what has been shown:

Theorem 8 (Reduction of ALCOQH Knowledge Base Satisfiability to
Satisfiability of Relational Monadic Formulas). Under assumption of the
axiom of choice, there is a polynomial time translation from an ALCOQH knowl-
edge base to an equi-satisfiable QMON= sentence. The translation takes time
linear in the size of the standard first-order translation of the knowledge base.
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An elimination-based decision procedure may yield requirements on the domain
cardinality. This applies also to translated DL KBs. A simple example is the KB
{> v ∃r.c, > v ∃r.¬c}. We obtain that the KB is only satisfiable for domains
whose cardinality is at least two: ∃c∀x∃r′ (∃y r′(y)∧ c(y))∧ (∃y r′(y)∧¬c(y)) ≡
∃y∃z y 6= z ≡ ∃≥2x>. The KB {> v {a}} translates into the equi-satisfiable
∃a∀x a = y (without predicate to eliminate), which can be expressed as ¬∃≥2x>.

The QMON= translation in formula (xii) suggests that the decision method
has to proceed by first eliminating the role predicates r′1, . . . , r

′
m, before any of

the concept predicates can be eliminated. One further conversion step can be
applied to relax this by also moving those of the other quantified predicates
that only occur with x as argument in F ′ to the right of ∀x with Prop. 7.
The introduction of auxiliary predicates in the processing of the standard first-
order translation can be arranged such that this applies to all predicates that
correspond to concept names in the input KB (the initial normalization of the
resolution-based elimination method in [27] satisfies an analogous criterion). The
resulting translation is then a QMON= formula of the form

∃d1 . . . ∃dk ∀x∃r′1 . . . ∃r′m ∃c′1 . . . ∃c′n F ′′, (xiii)

where the c′1, . . . , c
′
n are fresh nullary predicates, and F ′′ is obtained from F ′ in

(xii) by replacing for all i ∈ {1, . . . , n} all occurrences of ci(x) with c′i.
As we have seen, elimination of all concept and role predicates can be succes-

sively performed to decide ALCOQH knowledge bases. We now consider actual
elimination problems, where just some predicates should be eliminated. Given is
the standard first-order translation K of a knowledge base and a set {p1, . . . , pn}
of unary predicates that represent concept names in the knowledge base. The
objective is to apply second-order quantifier elimination to

∃p1 . . . pnK. (xiv)

The normalization with auxiliary predicates described above for deciding satisfi-
ability and further straightforward equivalence preserving conversion then yield
a formula that is equivalent to (xiv) and has the following form:

S ∧ ∃c1 . . . ∃cl ∃d1, . . . ,∃dk ∀xF, (xv)

where the c1, . . . , cl are those unary predicates in F that only occur with x as ar-
gument which includes the p1, . . . , pn, the d1, . . . , dk are all the remaining unary
auxiliary predicates introduced in the normalization, S is a sentence in which
the binary predicates r1, . . . , rm representing roles in F are the only predicates,
and F is a conjunction of disjunctions of basic formulas as displayed in Table 1.

The S component can in particular be used to express inverse roles by formu-
las like ∀x ∀y, ri(x, y) ↔ rj(y, x). Let R[x] be the formula

∧
1≤i≤m (∀y r′i(y) ↔

ri(x, y)). By Prop. 5, formula (xv) is then equivalent to

S ∧ ∃c1 . . . ∃cl ∃d1, . . . ,∃dk ∀x ∃r′1 . . . ∃r′mR[x] ∧ F ′, (xvi)

where, as in formula (xii), the r′1, . . . , r
′
m are fresh unary predicates and F ′ is

obtained from F by replacing all occurrences of ri(x, t) with r′i(t). By arguments
analogously to the derivation of formula (xiii), formula (xvi) is equivalent to:

S ∧ ∃d1, . . . ,∃dk ∀x ∃r′1 . . . ∃r′mR[x] ∧ ∃c′1 . . . ∃c′l F ′′, (xvii)
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where, as in formula (xvi), the c′1, . . . , c
′
l are fresh nullary predicates and F ′′

is obtained from F ′ by replacing all occurrences of ci(x) with c′i. Clearly, F ′′
is a MON= formula, implying that ∃c′1 . . . ∃c′l can be successfully eliminated by
monadic techniques. The ∃r′1 . . . ∃r′m can then be linearly eliminated according
to Prop. 5 by unfolding their definitions in R[x], followed by removing R[x].

If k = 0, that is, there are no ∃di, which is evidently the case if among the
constructs in Table 1 only the limited versions of restriction are permitted, that
is, in lines 3. and 9. of the table only > is allowed in place of d(y) and in line 4.
and 10. only ⊥, then the elimination is now completed. This result is expressed
in the following theorem statement.

Theorem 9 (Monadic Concept Elimination in DLs with Limited Re-
striction). We consider knowledge bases expressed in a description logic that is
like ALCOQH but only allows limited restriction and allows in addition inverse
roles. Under the assumption of the axiom of choice, there is a linear time trans-
lation that converts the standard first-order translation K of such a knowledge
base and a set {p1, . . . , pn} of unary predicates representing concept names in K
to a relational second-order formula that is equivalent to ∃p1 . . . ∃pnK and such
that those second-order quantifiers whose argument is not a QMON= formula
can be eliminated linearly by a series of applications of Prop. 5.

With permitting inverse roles but only limited restriction, the description logics
covered by Theorem 9 include the typical representatives of the DL-Lite family
[10]. The theorem can be easily strengthened to allow also the forgetting of roles
whose inverse is not used (more generally: whose corresponding predicates ri do
not occur in the S component of (xv)). To achieve this, the definitions of their
corresponding unary predicates r′i have just to be omitted from R[x].

An obvious limit of the translation underlying Theorem 9 is that elimination
of the ∃d1 . . . ∃dk in (xvii) with techniques based on monadicity is blocked: the
argument formula of the ∃di contains with R[x] binary predicates, and Prop. 7
can not be applied to move the di to the right of ∀x (and of R[x]) because
they occur in F ′′ with arguments other than x. So far, a general technique to
overcome this in the monadic setting has not been developed. In particular situ-
ations, elimination of an ∃di might nevertheless be possible after eliminating the
∃c′1 . . . ∃c′k. For example, if all occurrences of di then have x as argument, possi-
bly also after switching names of universal variables in some conjuncts, or after
introducing additional fresh di predicates (which may lead to non-termination).
Also the inclusion of other elimination techniques seems possible, in particular
of ones that can be considered as simplifications such as elimination in the case
where di occurs just in a single polarity. A further option might be to accept
predicates di in the elimination output if they can be regarded as just encoding
formula structure.

With the approach of elimination in description logics via embedding into
first-order logic, the issue of re-translation of the first-order elimination result
to the source language arises. Further auxiliary unary predicates introduced
according to Prop. 5 might be helpful to encapsulate complex basic formulas that
should not be broken during elimination. A general question is, how to deal with
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source languages whose first-order consequences diverge from the consequences
expressible in the language. As we have already seen, eliminating r and c from
{> v ∃r.c, > v ∃r.¬c} yields the first-order consequence ∃≥2x>, which as
such can not be expressed by an ALC KB. If the elimination result should be
combined with another knowledge base, say, {> v {a}}, it does well matter
whether the consequence ∃≥2x> is retained. Related examples, where forgetting
in ALC ontologies yields results with number restrictions that are expressed as
SHQ ontologies, can be found in [28].

5 Direct Methods in View of Monadic Techniques
Direct methods (also called methods following the Ackermann approach) were
introduced with the DLS algorithm [15,22,11] that operates on the basis of first-
order formulas. Its preprocessing step tries to rewrite the input such that all
innermost occurrences of second-order quantifiers allow elimination by Acker-
mann’s Lemma. A comparison of DLS with Behmann’s innex conversion imme-
diately suggests an improvement of DLS: The preprocessing of DLS starts with
conversion to negation normal form and does not include a rule to distribute
disjunction over conjunction. (It does includes a rule to distribute conjunction
over disjunction.) A simple example where DLS fails unnecessarily because no
preprocessing rule is applicable is thus ∃p∀x (p(x) ∧ q(x)) ∨ (¬p(x) ∧ r(x)).

It thus seems that DLS should be enhanced with distributing disjunction
over conjunction or equivalent techniques. In contrast to the original [15] and
the carefully analyzed variant [11] of DLS, related enhancements have been con-
sidered for the implementation [22], but not in a systematic way. A recent direct
method for modal logics [41] has a single rule which covers both required forms
of distribution since it does not operate on negation normal form.

Algorithms based on Ackermann’s Lemma operate by preprocessing the in-
put such that all innermost occurrences of second-order quantifiers are in for-
mulas of the form ∃pF1 ∧ F2, where p occurs in F1 only in positive and in F2

only in negative polarity. This form can always be converted into two alternate
forms where each subformula that starts with ∃p matches the left side of the
first or second variant of Ackermann’s Lemma, respectively. However, this step
might involve the introduction of Skolem functions that have to be replaced
after eliminating p by existential variables, which is not possible in all cases.
If one of the conjuncts F1 or F2 is a MON= formula, then this rewriting can
be performed without introduction of Skolem functions guaranteeing successful
elimination with Ackermann’s Lemma because there is no need for potentially
failing un-Skolemization. Based on the techniques from Sect. 2, the conversion of
∃pF1 ∧F2 can be achieved as follows for the case where F1 is a MON= formula:
Let k be a fresh nullary predicate. Convert ∃p F1 ∧ k to Behmann’s Generalized
Eliminationshauptform (Prop. 3) without applying rewritings which depend on
the fact that p does not occur in k. Replace all occurrences of k with F2. This
shows the following statement:
Theorem 10 (Applicability of Ackermann’s Lemma on Semi Monadic
Formulas). Consider a formula ∃p F1 ∧ F2 where F1 is a MON= formula in
which p occurs only with positive polarity and F2 is a first-order formula in
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which p only occurs with negative polarity. Then ∃p F1 ∧ F2 is equivalent to a
second-order formula in which all occurrences of second order quantifiers are
upon p and are of the form ∃p (∀xF ′1 → p(x))∧F ′2 where F ′1 is a MON= formula
without any occurrence of p and F ′2 a first-order formula with only negative oc-
currences of p. Moreover, all free variables, constants and predicates in formulas
F ′1 and F ′2 occur already in F1 ∧ F2. This statement applies analogously for the
case where p occurs with the respective complementary polarities in F1 and F2.
Successful termination on all elimination tasks that express the computation of
frame correspondence properties of Sahlqvist formulas is a desired and investi-
gated property of elimination methods [21,11,13,41]. The Sahlqvist-van Benthem
substitution algorithm [39,7,8] is a specialized method for that problem, where an
involved substitution step can be considered as elimination with Ackermann’s
Lemma. Based on the presentation in of that algorithm in [8, Sect. 3.6], we
show that the success of elimination for Sahlqvist formulas can be attributed in
part to the fact that a match with the “semi monadic” case, the precondition
of Theorem 10 can be established. We consider here just the core step of the
Sahlqvist-van Benthem algorithm. Given is a formula of the form:

∀p1 . . . ∀pn ∀x1 . . . ∀xm (REL ∧ BOX-AT)→ POS, (xviii)

where REL is a conjunction of atomic statements of the form r(xi, xj), BOX-AT
is a conjunction of formulas of the form ∀y rβ(xi, y)→ p(y) and POS is a formula
in which p1 . . . pn only occur with positive polarity. The rβ(xi, y) abbreviate
formulas which have xi and y as only free variables and which do not contain
any of the p1, . . . , pn. (The rβ could be formally introduced according to Prop. 5).
Formula xviii is equivalent to:

¬∃x1 . . . ∃xmREL ∧ ∃p1 . . . ∃pn BOX-AT ∧ ¬POS. (xix)

Conjunct ¬POS is an arbitrary formula in which the p1, . . . , pn occur only nega-
tively. Conjunct BOX-AT is a conjunction of formulas ∀y rβ(xi, y)→ p(y). Thus,
the p1, . . . , pn only occur only positively in BOX-AT. Prop. 5 allows to replace
the rβ by unary predicates r′βi

defined with formulas ∃r′βi
(∀y r′βi

(y)↔ rβ(xi, y))
interspersed immediately before ∃p1 . . . ∃pn. The preconditions of Theorem 10
are now met for the subformula starting at ∃pn and can be similarly estab-
lished with respect to ∃pn−1 after factoring implications ∀y rβi

(y)→ pn(y) and
eliminating ∃pn with Ackermann’s Lemma. The auxiliary predicates r′βi

can be
expanded again by Prop. 5 after eliminating ∃p1 . . . ∃pn.

6 Related Work
In [27,26,28,29] methods for uniform interpolation in various expressive DLs are
presented, which are explicitly related to resolution based elimination and Acker-
mann’s Lemma. They are based on a conjunctive normal form translation with
auxiliary defined concepts analogous to that described in Sect. 4 and operate
in two phases, related to the problem of eliminating the ∃di exhibited in for-
mula (xvii). In a resolution-based first phase at least all input concepts that
should be forgotten are eliminated. In this phase a finite (but possibly exponen-
tial) number of fresh auxiliary concepts is introduced in a controlled way. This
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phase is sufficient to decide the formula. A normalization is preserved such that
in the second phase all the remaining auxiliary concepts can be eliminated either
by Ackermann’s Lemma, or, in case of circular dependency, by a fixpoint gen-
eralization of it [36]. The preserved normalization ensures re-translatability of
the results to fixpoint extensions of the respective DL. Monadic properties have
not been explicitly considered in these works, but might be implicit in the used
normal form which represents concept and role names by propositional symbols.

In [3] equi-satisfiable translations of variants of DL-Lite into the one-variable
fragment of first-order logic are developed. Elimination problems have not been
considered there. The translation is not systematically derived by using second-
order equivalences. It needs to be investigated, whether its representation of
inverse roles and number restrictions can be transferred to the setting of Sect. 4.
Forgetting and related concepts are investigated for DL-Lite in [25], a specialized
algorithm for concept forgetting in DL-Lite is shown in [45].

Alternative decision methods for MON formulas include resolution: Equipped
with an appropriate ordering and condensation, it decides MON formulas, al-
though the associated Herbrand universe might be infinite due to Skolemization
[17]. A superposition-based decision method for MON= is given in [4]. Deciding
satisfiability for MON and MON= is NEXPTIME-complete, as presented in [9,
Sect. 6.2] along with more fine-grained results. The method of [30] underlying
the upper bound verifies a given interpretation by repeatedly constructing an
innex form with respect to some innermost individual quantifier occurrence and
then replacing the corresponding obtained quantified subformulas with > or ⊥
according to the interpretation. Only atoms present in the input are involved.

Relational monadic formulas have applications in verification: In [42] a de-
cision method for S1S, applied in the verification of temporal properties, is de-
scribed, which involves conversion to Behmann’s innex form. An OBDD-based
implementation is mentioned there. In [44] techniques to detect whether polyadic
relations correspond to a finite union of Cartesian products and, if this is the
case, decompose them into monadic form are developed.

7 Conclusion

We have restored the historic method by Behmann for second-order quantifier
elimination over a fragment of first-order logic, relational monadic formulas,
where elimination succeeds in general. It has striking similarities with the direct
approach of modern elimination methods, which are based on the more powerful
Ackermann’s Lemma that also applies to formulas with polyadic predicates and
functions, but do not succeed in the general case. We moved on to inspect some
applications of elimination with the conjecture that monadicity might play a role
in their success, in particular with a quantifier switching technique devised by
Ackermann to extend the applicability of methods for monadic formulas and of
the lemma named after him. A review of description logics viewed as embedded
into first-order logic shows that the decision problem for expressive logics such
as ALC can be reduced to the decision problem for relational monadic formu-
las with second-order quantification. While the corresponding elimination of all
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role and concept symbols succeeds, the structure of the translation prevents the
elimination of just an arbitrary selection of concept symbols. For elimination in
description logics of the DL-Lite family this provides no obstacle.

The involved transformations are all obtained from the standard relational
first-order translation with equivalence preserving steps that make use of a few
specific second-order equivalences. This is a clear and safe methodology which
suggests to investigate possibilities of mechanization, for example to detect cases
of eliminability or decidability that are not apparent in the syntactic form.

A further observation was that on a formula that has been separated by a
direct method in preparation for Ackermann’s Lemma the elimination can be
safely performed if one of the separated components is a monadic relational
formula. The application to Sahlqvist formulas provides an instance of this case.
It needs to be investigated whether the observation leads to completeness results
for interesting classes that have not been considered previously.

Another issue for future research is the deeper investigation of methods. In
particular the shown variant of quantifier innexing by Quine resembles methods
of knowledge compilation based on the Shannon expansion [35,46]. For inputs
from particular applications such as translated description logic knowledge bases
it can be observed that they are already in innex from with respect to first-order
quantifiers. A question that arises here is whether known special methods would
be simulated by rewriting-based elimination methods.
Acknowledgements. This work was supported by DFG grant WE 5641/1-1.
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