Range-Restricted and Horn Interpolation through Clausal Tableaux

Christoph Wernhard
University of Potsdam
TABLEAUX 2023
Prague, Czech Republic, Sep 18-21, 2023

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 457292495.
The work was supported by the North-German Supercomputing Alliance (HLRN).

Range-Restricted and Horn Interpolation through Clausal Tableaux

1. Query Reformulation as Craig Interpolation
2. Craig Interpolation with Clausal Tableaux
3. Considered Notions of Range-Restriction
4. Theorems on Interpolation, Range-Restriction and the Horn Property
5. On Proving the Theorems - The Hyper Property
6. Conclusion

Range-Restricted and Horn Interpolation through Clausal Tableaux

1. Query Reformulation as Craig Interpolation

2. Craig Interpolation with Clausal Tableaux
3. Considered Notions of Range-Restriction
4. Theorems on Interpolation, Range-Restriction and the Horn Property
5. On Proving the Theorems - The Hyper Property
6. Conclusion

Query Refomulation as Craig Interpolation

\&C MORGNN\&Clayrool puhlishers
Fundamentals of Physical Design and Query Compilation
David Toman Grant Weddell
Swnums Lecruxes on Daft Mm

[Craig 1957]

[Nash, Segoufin, Vianu 2005, 2010]
[Toman, Wedell 2011]
[Benedikt et al. 2016]

$$
\begin{gathered}
K \vDash \forall x(Q x \leftrightarrow R x) \\
K \vDash Q x \rightarrow R x \quad \\
K \vDash R x \rightarrow Q x \\
K \wedge Q x \quad \vDash R x \vDash \quad \neg K^{\prime} \vee Q^{\prime} x
\end{gathered}
$$

$$
\begin{gathered}
K \vDash \forall x(Q x \leftrightarrow R x) \\
K \wedge Q x \neq R x \vDash \neg K^{\prime} \vee Q^{\prime} x
\end{gathered}
$$

- In DB/KR applications R should have desirable properties, in dependency of properties of K and Q
- In particular, query formulas should be "evaluable" - captured by domain independence
- Domain independence is undecidable, but there are various syntactic restrictions to ensure it

	Query	Domain independent
1	$\{x \mid \neg \mathrm{p}(x)\}$	
2	$\{x \mid \mathrm{p}(x) \wedge \neg \mathrm{q}(x)\}$	\checkmark
3	$\{\langle x, y\rangle \mid \mathrm{p}(x) \vee \mathrm{q}(y)\}$	
4	$\{x \mid \mathrm{p}(x) \vee \exists y \mathrm{q}(x, y)\}$	\checkmark

Range-Restricted and Horn Interpolation through Clausal Tableaux

1. Query Reformulation as Craig Interpolation
2. Craig Interpolation with Clausal Tableaux
3. Considered Notions of Range-Restriction
4. Theorems on Interpolation, Range-Restriction and the Horn Property
5. On Proving the Theorems - The Hyper Property
6. Conclusion

Clausal First-Order Tableaux

- A framework from fully automated first-order proving
- Systems
- Prolog Technology Theorem Prover [Stickel 1988]
- SETHEO [Letz, Bibel et al. 1992]
- CMProver [CW 1992]
- leanCoP [Otten, Bibel 2003]
- Methodology
- Connection method [Bibel 1982]
- Model elimination [Loveland 1978]
- Clausal tableaux [Letz 1999]
- Permits Craig interpolation [CW JAR 2021]

Clausal Tableaux Theorem Proving

```
\forallx p(x)^\forallx(\neg\textrm{p}(x)\vee\textrm{q}(x))\vDash\forallx(\neg\textrm{q}(x)\vee\textrm{r}(x))->\textrm{r}(\textrm{a})
1 p(x)
2 \negp(x)\vee q(x)
3 \negq(x)\vee r(x)
\negr(a)
```


Craig Interpolation with Clausal Tableaux [CW JAR 2021]

$$
\forall x \mathrm{p}(x) \wedge \forall x(\neg \mathrm{p}(x) \vee \mathrm{q}(x)) \vDash \forall x \mathrm{q}(x) \vDash \forall x(\neg \mathrm{q}(x) \vee \mathrm{r}(x)) \rightarrow \mathrm{r}(\mathrm{a})
$$

1	$\mathrm{p}(x)$
2	$\neg \mathrm{p}(x) \vee \mathrm{q}(x)$
3	$\neg \mathrm{q}(x) \vee \mathrm{r}(x)$
4	$\neg \mathrm{r}(\mathrm{a})$

side(N)		ipol(N)	side (N_{1})	ipol(N)	th variables
F	F	\perp	F	$\bigvee_{i=1}^{n} \operatorname{ipol}\left(N_{i}\right)$	
F	G	$\underline{\operatorname{lit}(N)}$	G	$\bigwedge_{i=1}^{n} \operatorname{ipol}\left(N_{i}\right)$	tifier order
G	F	$\overline{\operatorname{lit}(N)}$			
G	G	T			

Procedure CTIF, a 2-Stage Interpolation Method

 Input: First-order formulas F and G s.th. $F \vDash G$ Output: A Craig-Lyndon interpolant H of F and G1. Free variables to placeholder constants
2. Skolemization and clausification of F and $\neg G$
3. Tableau computation by a prover
4. Tableau grounding

Heuristics: choice of terms for grounding
5. Side assignment of the tableau clauses Heuristics: if a clause is from both F and $\neg G$
6. "Stage 1" Ground interpolant extraction

Craig Interpolation with Clausal Tableaux [CW JAR 2021]

$$
\forall x \mathrm{p}(x) \wedge \forall x(\neg \mathrm{p}(x) \vee \mathrm{q}(x)) \vDash \forall x \mathrm{q}(x) \vDash \forall x(\neg \mathrm{q}(x) \vee \mathrm{r}(x)) \rightarrow \mathrm{r}(\mathrm{a})
$$

Procedure CTIF, a 2-Stage Interpolation Method Input: First-order formulas F and G s.th. $F \vDash G$ Output: A Craig-Lyndon interpolant H of F and G

1. Free variables to placeholder constants
2. Skolemization and clausification of F and $\neg G$
3. Tableau computation by a prover
4. Tableau grounding

Heuristics: choice of terms for grounding
5. Side assignment of the tableau clauses Heuristics: if a clause is from both F and $\neg G$
6. "Stage 1" Ground interpolant extraction
7. "Stage 2" Lifting: replacing terms with variables and adding a quantifier prefix
Roughly: \exists if term from F, \forall if from G
Heuristics: linearizing the partial quantifier order
8. Placeholder constants to free variables

Range-Restricted and Horn Interpolation through Clausal Tableaux

1. Query Reformulation as Craig Interpolation
2. Craig Interpolation with Clausal Tableaux
3. Considered Notions of Range-Restriction
4. Theorems on Interpolation, Range-Restriction and the Horn Property
5. On Proving the Theorems - The Hyper Property
6. Conclusion

Definition

A formula $F(\mathcal{X})$ is VGT-range-restricted $(V G T-R R)$ if $\operatorname{cnf}(F)=Q M_{\mathrm{C}}$ and $\operatorname{dnf}(F)=Q M_{\mathrm{D}}$, where

- Q is a quantifier prefix upon universal variables \mathcal{U} and existential variables \mathcal{E}
- M_{C} is a CNF matrix
- M_{D} is a DNF matrix
such that

1. For all clauses C in M_{C} it holds that $\operatorname{Var}(C) \cap \mathcal{U} \subseteq \mathcal{V}^{-}{ }^{-}(C)$.
2. For all conjunctive clauses D in M_{D} it holds that $\operatorname{Var}(D) \cap \mathcal{E} \subseteq \mathcal{V a r}^{+}(D)$.
3. For all conjunctive clauses D in M_{D} it holds that $\mathcal{X} \subseteq \mathcal{V} \operatorname{ar}^{+}(D)$.

Example

Does some supplier supply all parts required for project a ?
Let $F=\exists x \forall y(\neg \mathrm{r}(\mathrm{a}, y) \vee \mathrm{s}(x, y))$

$$
\begin{aligned}
& \operatorname{cnf}(F)=\exists x \forall y \quad \neg \mathrm{r}(\mathrm{a}, y) \vee \mathrm{s}(x, y) \\
& \operatorname{dnf}(F)=\exists x \forall y \\
& \neg \mathrm{r}(\mathrm{a}, y) \\
& \mathrm{s}(x, y)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example } \\
& \text { Let } F=\exists x[(\mathrm{p}(x, y) \vee \mathrm{q}(y)) \wedge \neg \mathrm{r}(y)] \\
& \qquad \begin{array}{rll}
\mathrm{cnf}(F)=\exists x & \mathrm{p}(x, y) \vee \mathrm{q}(y) \\
\neg \mathrm{r}(y)
\end{array} \\
& \operatorname{dnf}(F)=\exists x \\
& \begin{array}{l}
\mathrm{p}(x, y) \wedge \neg \mathrm{r}(y) \\
\mathrm{q}(y) \wedge \neg \mathrm{r}(y)
\end{array}
\end{aligned}
$$

Note: $F \equiv(\exists x \mathrm{p}(x, y) \vee \mathrm{q}(y)) \wedge \neg \mathrm{r}(y)$

"Universal" Range-Restriction

Definition

A formula $F(\mathcal{X})$ is U-range-restricted $(U-R R)$ if $\operatorname{cnf}(F)=Q M_{\mathrm{C}}$ and $f(F)=Q M_{D}$, where

- Q is a quantifier prefix upon universal variables \mathcal{U} and existential variables \mathcal{E}
- M_{C} is a CNF matrix
- MD is a DNF matrix
such that

1. For all clauses C in M_{C} it holds that $\operatorname{Var}(C) \cap \mathcal{U} \subseteq \mathcal{V}^{-}{ }^{-}(C)$.
2. For alleonjunctive clauses D in M_{D} it holds that $\mathcal{V}(D) \cap \mathcal{E} \subseteq \mathcal{V a r}^{+}(P)$.
3. For alleconjunctive clauses D in M_{D} it holds that $\mathcal{X} \subseteq \mathcal{V a r}^{+}(D)$.

If F is a sentence, then

- F is VGT-RR iff F and $\neg F$ are both U-RR
- If F is universal then F is VGT-RR iff F is U-RR
- If F is existential then F is VGT-RR iff $\neg F$ is U-RR

Range-Restricted and Horn Interpolation through Clausal Tableaux

1. Query Reformulation as Craig Interpolation
2. Craig Interpolation with Clausal Tableaux
3. Considered Notions of Range-Restriction
4. Theorems on Interpolation, Range-Restriction and the Horn Property
5. On Proving the Theorems - The Hyper Property
6. Conclusion

Interpolation and Range-Restriction

Theorem (Interpolation and Range-Restriction)

Assume $F \vDash G$. If $F, \neg G$ satisfy the conditions specified in the table, then there exists a Craig-Lyndon interpolant H of F and G with the property given in the table.
Moreover, H can be effectively constructed from a clausal tableau proof of $F \vDash G$.

F	$\neg G$	H
U-RR		U-RR
U-RR, $\operatorname{Var}(F)=\varnothing$	U-RR, $\operatorname{Var}(\neg G)=\varnothing$	VGT-RR
U-RR, $\operatorname{V} \operatorname{ar}(F)=\mathcal{X}, *$	U-RR, $\operatorname{Var}(\neg G)=\mathcal{X}, *$	VGT-RR

* Fineprint for case with free variables \mathcal{X} in both F and $\neg G$:

1. No negative clause in $\operatorname{cnf}(F)$
2. For all negative clauses C in $\operatorname{cnf}(\neg G)$ it holds that $\mathcal{X} \subseteq \mathcal{V}^{-}{ }^{-}(C)$
3. For all clauses C in $\operatorname{cnf}(\neg G)$ it holds that $\mathcal{V} \operatorname{ar}(C) \cap \mathcal{X} \subseteq \mathcal{V} \operatorname{Vr}^{-}(C)$

- Recall that $K \vDash \forall x(Q x \leftrightarrow R x)$ iff $K \wedge Q x \vDash R x \vDash \neg K^{\prime} \vee Q^{\prime} x$

Assuming K is a sentence, our theorem instantiates to

$K \wedge Q x$	$K \wedge \neg Q x$	$R x$
U-RR		U-RR
U-RR, Q Boolean	U-RR, Q Boolean	VGT-RR
U-RR, *	U-RR, *	VGT-RR

* Fineprint for non-Boolean $Q x$

1. No negative clause in $\operatorname{cnf}(K \wedge Q x)$
2. For all negative clauses C in $\operatorname{cnf}(\neg Q x)$ it holds that $x \in \mathcal{V} a r^{-}(C)$
3. For all clauses C in $\operatorname{cnf}\left(K^{\prime} \wedge \neg Q^{\prime} x\right)$ it holds that if $x \in \mathcal{V} \operatorname{Var}(C)$, then $x \in \operatorname{Var}^{-}(C)$

Horn Interpolation

Theorem (Horn Interpolation)

Assume $F \vDash G$. If $F, \neg G$ satisfy the conditions specified in the table, then there exists a Craig-Lyndon interpolant H of F and G with the properties given in the table.
Moreover, H can be effectively constructed from a clausal tableau proof of $F \vDash G$.

F	$\neg G$	H
Horn		Horn
U-RR, Horn		U-RR, Horn
U-RR, $\operatorname{Var}(F)=\varnothing$, Horn	U-RR, $\mathcal{V} \operatorname{ar}(\neg G)=\varnothing$	VGT-RR, Horn
U-RR, $\mathcal{V} \operatorname{ar}(F)=\mathcal{X}, *$, Horn	U-RR, $\mathcal{V} \operatorname{ar}(\neg G)=\mathcal{X}, *$	VGT-RR, Horn

* Fineprint for case with free variables \mathcal{X} in both F and $\neg G$:

1. No negative clause in $\operatorname{cnf}(F)$
2. For all negative clauses C in $\operatorname{cnf}(\neg G)$ it holds that $\mathcal{X} \subseteq \mathcal{V}^{-} r^{-}(C)$
3. For all clauses C in $\operatorname{cnf}(\neg G)$ it holds that $\mathcal{V} \operatorname{ar}(C) \cap \mathcal{X} \subseteq \mathcal{V}^{-}(C)$

- Both the cases for range-restriction and Horn are proven by induction on the same proof structures

Range-Restricted and Horn Interpolation through Clausal Tableaux

1. Query Reformulation as Craig Interpolation
2. Craig Interpolation with Clausal Tableaux
3. Considered Notions of Range-Restriction
4. Theorems on Interpolation, Range-Restriction and the Horn Property

5. On Proving the Theorems - The Hyper Property

6. Conclusion

The Hyper Property

Definition

A clausal tableau is called hyper if the nodes labeled with a negative literal are exactly the leaf nodes.

- On a clausal tableau with the hyper property, the CTIF procedure computes interpolants according to our theorems
- Arbitrary clausal tableaux can be converted such that they get the hyper property
- Also resolution deduction trees can be converted to clausal tableaux that are hyper

Basic use of the Hyper Property in the Proofs of the Theorems

- We distinguish the terms that eventually will be converted to variables
- We show invariants in ground interpolant extraction by induction, e.g.

$$
\begin{aligned}
& \text { If } C \text { in } \operatorname{cnf}(\operatorname{ipol}(N)) \text {, then } \\
& \mathcal{V}-\mathcal{M a x}(C) \cap \mathcal{U} \subseteq \mathcal{V}-\mathcal{M a x}{ }^{-}(C) \cup \mathcal{V}-\mathcal{M} \operatorname{Max}^{+}\left(\operatorname{path}_{\mathrm{F}}(N)\right)
\end{aligned}
$$

- Induction step, two cases:

Handling Resolution Proofs

- These three representation are essentially the same

Resolution deduction tree	Semantic tree	Clausal tableau in cut normal form

- We apply our hyper conversion to the clausal tableau in cut normal form
- It eliminates the atomic cuts: if the tableau is closed, regular and hyper it can not have atomic cuts

Is Resolution to Hyper Practically Feasible?

- We tried the Problems of the latest CASC that could be solved by Prover9

	Proof sizes				
Conversion step	Proofs	Min	Max	Med	Time
Solved by Prover9 in 400 s	113				
Prooftrans to binary resolution and paramodulation	112	12	919	55	
Paramodulation to binary resolution	112	10	4,833	81	fast
Expansion to cut normal form	110	20	$97,866,317$	259	fast, except one 121 s
Hyper conversion	107	11	3,110	77	fast, some up to 235 s

- Side observation: the hyper conversion often reduced the proof size
- The largest on which hyper conversion succeeded had size 51,359 and was reduced to 507

Range-Restricted and Horn Interpolation through Clausal Tableaux

1. Query Reformulation as Craig Interpolation
2. Craig Interpolation with Clausal Tableaux
3. Considered Notions of Range-Restriction
4. Theorems on Interpolation, Range-Restriction and the Horn Property
5. On Proving the Theorems - The Hyper Property
6. Conclusion

Outlook and Related Work

- Towards practice
- Systems currently suitable for our approach: CMProver, Prover9
- Implementation under way
- E, Vampire output proofs with gaps
- Other approaches
- For query reformulation mostly sequent systems or analytic tableaux [Fitting 1995] are used
- Vampire's interpolation targeted at verification [Benedikt 2017]
- Princess' interpolation [Rümmer 2008]
- So far no other work that considers a variant of range-restriction with general first-order ATP systems
- Some open issues
- Special handling of equality; possible starting-points [Van Gelder, Topor 1993, Baumgartner, Schmidt 2020]
- Structure preserving normal forms
- Matching our theorems with DB/KR-relevant formula classes
- The hyper property may be of further independent interest
- Proof presentation
- Generalizable to "semantics"

Concluding Remarks

- Prenexing and clausification are utilized here for 3 reasons
- The efficient first-order provers
- Van Gelder and Topor's characterization of range-restriction
- Our two-stage interpolation method
- In general, an approach to proof structures with a place for efficient fully automated first-order provers
- Proof transformations give them freedom to utilize their optimizations
- The provers only must return a clausal tableaux proof or a resolution proof

References I

[Abiteboul et al., 1995] Abiteboul, S., Hull, R., and Vianu, V. (1995).
Foundations of Databases.
Addison Wesley.
[Baumgartner and Schmidt, 2020] Baumgartner, P. and Schmidt, R. A. (2020).
Blocking and other enhancements for bottom-up model generation methods.
J. Autom. Reasoning, 64:197-251.
[Benedikt et al., 2017] Benedikt, M., Kostylev, E. V., Mogavero, F., and Tsamoura, E. (2017).
Reformulating queries: Theory and practice.
In Sierra, C., editor, IJCAI 2017, pages 837-843. ijcai.org.
[Benedikt et al., 2016] Benedikt, M., Leblay, J., ten Cate, B., and Tsamoura, E. (2016). Generating Plans from Proofs: The Interpolation-based Approach to Query Reformulation.
Morgan \& Claypool.
[Bibel, 1987] Bibel, W. (1987).
Automated Theorem Proving.
Vieweg, Braunschweig.
First edition 1982.

References II

[Bibel and Otten, 2020] Bibel, W. and Otten, J. (2020).
From Schütte's formal systems to modern automated deduction.
In Kahle, R. and Rathjen, M., editors, The Legacy of Kurt Schütte, chapter 13, pages 215-249. Springer.
[Bonacina and Johansson, 2015] Bonacina, M. P. and Johansson, M. (2015).
On interpolation in automated theorem proving.
J. Autom. Reasoning, 54(1):69-97.
[Brillout et al., 2011] Brillout, A., Kroening, D., Rümmer, P., and Wahl, T. (2011).
Beyond quantifier-free interpolation in extensions of presburger arithmetic.
In Jhala, R. and Schmidt, D., editors, VMCAI 2011, pages 88-102. Springer.
[Craig, 1957] Craig, W. (1957).
Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory.
J. Symb. Log., 22(3):269-285.
[Huang, 1995] Huang, G. (1995).
Constructing Craig interpolation formulas.
In Du, D.-Z. and Li, M., editors, COCOON '95, volume 959 of LNCS, pages 181-190. Springer.

References III

[Kovács and Voronkov, 2017] Kovács, L. and Voronkov, A. (2017).
First-order interpolation and interpolating proof systems.
In Eiter, T. and Sands, D., editors, LPAR-21, volume 46 of EPiC, pages 49-64. EasyChair.
[Letz, 1999] Letz, R. (1999).
Tableau and Connection Calculi. Structure, Complexity, Implementation.
Habilitationsschrift, TU München.
Available from http://www2.tcs.ifi.lmu.de/~letz/habil.ps, accessed Jul 19, 2023.
[Letz et al., 1992] Letz, R., Schumann, J., Bayerl, S., and Bibel, W. (1992).
SETHEO: A high-performance theorem prover.
J. Autom. Reasoning, 8(2):183-212.
[Loveland, 1978] Loveland, D. W. (1978).
Automated Theorem Proving: A Logical Basis.
North-Holland, Amsterdam.
[Nash et al., 2010] Nash, A., Segoufin, L., and Vianu, V. (2010).
Views and queries: Determinacy and rewriting.
ACM Trans. Database Syst., 35(3):1-41.

References IV

[Otten and Bibel, 2003] Otten, J. and Bibel, W. (2003).
leanCoP: lean connection-based theorem proving.
J. Symb. Comput., 36(1-2):139-161.
[Stickel, 1988] Stickel, M. E. (1988).
A Prolog technology theorem prover: implementation by an extended Prolog compiler.
J. Autom. Reasoning, 4(4):353-380.
[Toman and Weddell, 2011] Toman, D. and Weddell, G. (2011).
Fundamentals of Physical Design and Query Compilation.
Morgan \& Claypool.
[Van Gelder and Topor, 1991] Van Gelder, A. and Topor, R. W. (1991).
Safety and translation of relational calculus queries.
ACM Trans. Database Syst., 16(2):235-278.
[Wernhard, 2016] Wernhard, C. (2016).
The PIE system for proving, interpolating and eliminating.
In Fontaine, P., Schulz, S., and Urban, J., editors, PAAR 2016, volume 1635 of CEUR Workshop Proc., pages 125-138.
CEUR-WS.org.

References V

[Wernhard, 2020] Wernhard, C. (2020).
Facets of the PIE environment for proving, interpolating and eliminating on the basis of first-order logic.
In Hofstedt, P. et al., editors, DECLARE 2019, Revised Selected Papers, volume 12057 of LNCS (LNAI), pages 160-177. Springer.
[Wernhard, 2021] Wernhard, C. (2021).
Craig interpolation with clausal first-order tableaux.
J. Autom. Reasoning, 65(5):647-690.

