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Query Refomulation as Craig Interpolation

K ⊧ ∀x (Qx ↔ Rx)

K ⊧ Qx → Rx K ⊧ Rx → Qx

K ∧Qx ⊧ Rx ⊧ ¬K ′ ∨Q
′
x

4

[Craig 1957][Nash, Segoufin, Vianu 2005, 2010][Toman, Wedell 2011][Benedikt et al. 2016]



Desirable Properties of Database Queries

K ⊧ ∀x (Qx ↔ Rx)
K ∧Qx ⊧ Rx ⊧ ¬K ′ ∨Q

′
x

In DB/KR applications R should have desirable properties, in dependency of properties ofK andQIn particular, query formulas should be “evaluable” – captured by domain independenceDomain independence is undecidable, but there are various syntactic restrictions to ensure it

Query Domain independent
1 {x ∣ ¬p(x)}
2 {x ∣ p(x) ∧ ¬q(x)} ✓

3 {⟨x, y⟩ ∣ p(x) ∨ q(y)}
4 {x ∣ p(x) ∨ ∃y q(x, y)} ✓
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Clausal First-Order Tableaux

A framework from fully automated first-order proving

Systems
• Prolog Technology Theorem Prover [Stickel 1988]• SETHEO [Letz, Bibel et al. 1992]• CMProver [CW 1992]• leanCoP [Otten, Bibel 2003]
Methodology
• Connection method [Bibel 1982]• Model elimination [Loveland 1978]• Clausal tableaux [Letz 1999]

Permits Craig interpolation [CW JAR 2021]
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Clausal Tableaux Theorem Proving
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∀x p(x) ∧ ∀x (¬p(x) ∨ q(x)) ⊧ ∀x (¬q(x) ∨ r(x)) → r(a)

1 p(x)
2 ¬p(x) ∨ q(x)
3 ¬q(x) ∨ r(x)
4 ¬r(a)

•

¬r(a)

¬q(a)

¬p(a)

p(a)

q(a)

r(a)



Craig Interpolation with Clausal Tableaux [CW JAR 2021]

Procedure CTIF, a 2-Stage Interpolation MethodInput: First-order formulas F and G s.th. F ⊧ GOutput: A Craig-Lyndon interpolantH of F and G

1. Free variables to placeholder constants
2. Skolemization and clausification of F and ¬G
3. Tableau computation by a prover
4. Tableau grounding

Heuristics: choice of terms for grounding
5. Side assignment of the tableau clauses

Heuristics: if a clause is from both F and ¬G
6. “Stage 1” Ground interpolant extraction
7. “Stage 2” Lifting: replacing terms with variablesand adding a quantifier prefixRoughly: ∃ if term from F , ∀ if from G

Heuristics: linearizing the partial quantifier order
8. Placeholder constants to free variables
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∀x p(x) ∧ ∀x (¬p(x) ∨ q(x)) ⊧ ∀x q(x) ⊧ ∀x (¬q(x) ∨ r(x)) → r(a)

1 p(x)
2 ¬p(x) ∨ q(x)
3 ¬q(x) ∨ r(x)
4 ¬r(a)

•

¬r(a) [q(a)]

¬q(a) [q(a)]

¬p(a) [⊥]

p(a) [⊥]

q(a) [q(a)]

r(a) [⊤]

side(N ) side(tgt(N )) ipol(N )
F F ⊥

F G lit(N )
G F lit(N )
G G ⊤

side(N1) ipol(N )
F ⋁n

i=1 ipol(Ni)
G ⋀n

i=1 ipol(Ni)



Craig Interpolation with Clausal Tableaux [CW JAR 2021]

Procedure CTIF, a 2-Stage Interpolation MethodInput: First-order formulas F and G s.th. F ⊧ GOutput: A Craig-Lyndon interpolantH of F and G

1. Free variables to placeholder constants
2. Skolemization and clausification of F and ¬G
3. Tableau computation by a prover
4. Tableau grounding

Heuristics: choice of terms for grounding
5. Side assignment of the tableau clauses

Heuristics: if a clause is from both F and ¬G
6. “Stage 1” Ground interpolant extraction
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8. Placeholder constants to free variables

10

∀x p(x) ∧ ∀x (¬p(x) ∨ q(x)) ⊧ ∀x q(x) ⊧ ∀x (¬q(x) ∨ r(x)) → r(a)

1 p(x)
2 ¬p(x) ∨ q(x)
3 ¬q(x) ∨ r(x)
4 ¬r(a)

•

¬r(a) [q(a)]

¬q(a) [q(a)]

¬p(a) [⊥]

p(a) [⊥]

q(a) [q(a)]

r(a) [⊤]



1. Query Reformulation as Craig Interpolation
2. Craig Interpolation with Clausal Tableaux
3. Considered Notions of Range-Restriction
4. Theorems on Interpolation, Range-Restriction and the Horn Property
5. On Proving the Theorems – The Hyper Property
6. Conclusion

11

Range-Restricted and Horn Interpolation through Clausal Tableaux



”VGT-Range-Restriction” [Van Gelder, Topor: Safety and Translation of Relational Calculus Queries, 1991]

DefinitionA formula F (X ) is VGT-range-restricted (VGT-RR) if cnf(F ) = QMC and dnf(F ) = QMD, where
Q is a quantifier prefix upon universal variables U and existential variables E
MC is a CNF matrix
MD is a DNF matrix

such that
1. For all clauses C inMC it holds that Var (C) ∩ U ⊆ Var−(C).2. For all conjunctive clausesD inMD it holds that Var (D) ∩ E ⊆ Var+(D).3. For all conjunctive clausesD inMD it holds that X ⊆ Var+(D).
Example
Does some supplier supply all parts required for project a?
Let F = ∃x∀y (¬r(a, y) ∨ s(x, y))
cnf(F ) = ∃x∀y ¬r(a, y) ∨ s(x, y)
dnf(F ) = ∃x∀y ¬r(a, y)

s(x, y)

ExampleLet F = ∃x [(p(x, y) ∨ q(y)) ∧ ¬r(y)]
cnf(F ) = ∃x p(x, y) ∨ q(y)

¬r(y)
dnf(F ) = ∃x p(x, y) ∧ ¬r(y)

q(y) ∧ ¬r(y)
Note: F ≡ (∃x p(x, y) ∨ q(y)) ∧ ¬r(y)
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”Universal” Range-Restriction

DefinitionA formula F (X ) is U-range-restricted (U-RR) if cnf(F ) = QMC and dnf(F ) = QMD, where
Q is a quantifier prefix upon universal variables U and existential variables E
MC is a CNF matrix
MD is a DNF matrix

such that
1. For all clauses C inMC it holds that Var (C) ∩ U ⊆ Var−(C).2. For all conjunctive clausesD inMD it holds that Var (D) ∩ E ⊆ Var+(D).3. For all conjunctive clausesD inMD it holds that X ⊆ Var+(D).

If F is a sentence, then
F is VGT-RR iff F and ¬F are both U-RRIf F is universal then F is VGT-RR iff F is U-RRIf F is existential then F is VGT-RR iff ¬F is U-RR
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Interpolation and Range-Restriction

Theorem (Interpolation and Range-Restriction)Assume F ⊧ G. If F ,¬G satisfy the conditions specified in the table, then there exists a Craig-Lyndon interpolant
H of F and G with the property given in the table.
Moreover,H can be effectively constructed from a clausal tableau proof of F ⊧ G.

F ¬G H

U-RR U-RRU-RR, Var (F ) = ∅ U-RR, Var (¬G) = ∅ VGT-RRU-RR, Var (F ) = X , ∗ U-RR, Var (¬G) = X , ∗ VGT-RR
∗ Fineprint for case with free variables X in both F and ¬G:
1. No negative clause in cnf(F )2. For all negative clauses C in cnf(¬G) it holds that X ⊆ Var−(C)3. For all clauses C in cnf(¬G) it holds that Var (C) ∩ X ⊆ Var−(C)
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Interpolation and Range-Restriction in the Context of Definition Synthesis

Recall thatK ⊧ ∀x (Qx ↔ Rx) iff K ∧Qx ⊧ Rx ⊧ ¬K ′ ∨Q
′
x

AssumingK is a sentence, our theorem instantiates to

K ∧Qx K ∧ ¬Qx Rx

U-RR U-RRU-RR, Q Boolean U-RR,Q Boolean VGT-RRU-RR, ∗ U-RR, ∗ VGT-RR
∗ Fineprint for non-Boolean Qx

1. No negative clause in cnf(K ∧Qx)2. For all negative clauses C in cnf(¬Qx) it holds that x ∈ Var−(C)3. For all clauses C in cnf(K ′ ∧ ¬Q′
x) it holds that if x ∈ Var (C), then x ∈ Var−(C)
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Horn Interpolation

Theorem (Horn Interpolation)Assume F ⊧ G. If F ,¬G satisfy the conditions specified in the table, then there exists a Craig-Lyndon interpolant
H of F and G with the properties given in the table.
Moreover,H can be effectively constructed from a clausal tableau proof of F ⊧ G.

F ¬G H

Horn HornU-RR, Horn U-RR, HornU-RR, Var (F ) = ∅, Horn U-RR, Var (¬G) = ∅ VGT-RR, HornU-RR, Var (F ) = X , ∗, Horn U-RR, Var (¬G) = X , ∗ VGT-RR, Horn
∗ Fineprint for case with free variables X in both F and ¬G:
1. No negative clause in cnf(F )2. For all negative clauses C in cnf(¬G) it holds that X ⊆ Var−(C)3. For all clauses C in cnf(¬G) it holds that Var (C) ∩ X ⊆ Var−(C)

Both the cases for range-restriction and Horn are proven by induction on the same proof structures
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The Hyper Property

DefinitionA clausal tableau is called hyper if the nodes labeled with a negative literal are exactly the leaf nodes.
On a clausal tableau with the hyper property, the CTIF procedure computes interpolants according to our
theoremsArbitrary clausal tableaux can be converted such that they get the hyper propertyAlso resolution deduction trees can be converted to clausal tableaux that are hyper

•

¬q

¬p

p

q

⇒

•

p

¬p q

¬q
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Basic use of the Hyper Property in the Proofs of the Theorems

We distinguish the terms that eventually will be converted to variablesWe show invariants in ground interpolant extraction by induction, e.g.
If C in cnf(ipol(N )), then
V-Max (C) ∩ U ⊆ V-Max

−(C) ∪ V-Max
+(pathF(N ))

Induction step, two cases:
p(u)

r [¬p(u) ∨H
′(u)]

¬p(u) [¬p(u)] q(u) [H ′(u)]

p(u)

r [H ′(u)]

¬p(u) [⊥] q(u) [H ′(u)]
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Hyper Conversion

¬p. . . . . . ⇒
[ p ↦ p

¬p. . . . . .

]
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Handling Resolution Proofs

These three representation are essentially the same

We apply our hyper conversion to the clausal tableau in cut normal form

It eliminates the atomic cuts: if the tableau isclosed, regular and hyper it can not have atomic cuts

22

Resolution
deduction tree

□

q

p ¬p ∨ q

¬q

Semantic tree

p

¬p

¬p ∨ q

p

¬q

¬q

q

Clausal tableau in
cut normal form

•
¬q

¬p

p

p

¬p q

q

¬q

p

¬p p



Is Resolution to Hyper Practically Feasible?

We tried the Problems of the latest CASC that could be solved by Prover9
Proof sizes

Conversion step Proofs Min Max Med Time

Solved by Prover9 in 400 s 113
Prooftrans to binary resolution and paramodulation 112 12 919 55Paramodulation to binary resolution 112 10 4,833 81 fast
Expansion to cut normal form 110 20 97,866,317 259 fast, except one 121 s
Hyper conversion 107 11 3,110 77 fast, some up to 235 s
Side observation: the hyper conversion often reduced the proof size
The largest on which hyper conversion succeeded had size 51,359 and was reduced to 507
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Outlook and Related Work

Towards practice
• Systems currently suitable for our approach: CMProver, Prover9• Implementation under way• E, Vampire output proofs with gaps
Other approaches
• For query reformulation mostly sequent systems or analytic tableaux [Fitting 1995] are used• Vampire’s interpolation targeted at verification [Benedikt 2017]• Princess’ interpolation [Rümmer 2008]• So far no other work that considers a variant of range-restriction with general first-order ATP systems
Some open issues
• Special handling of equality; possible starting-points [Van Gelder, Topor 1993, Baumgartner, Schmidt 2020]• Structure preserving normal forms• Matching our theorems with DB/KR-relevant formula classes
The hyper property may be of further independent interest
• Proof presentation• Generalizable to “semantics”
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Concluding Remarks

Prenexing and clausification are utilized here for 3 reasons
• The efficient first-order provers• Van Gelder and Topor’s characterization of range-restriction• Our two-stage interpolation method
In general, an approach to proof structures with a place for efficient fully automated first-order provers
• Proof transformations give them freedom to utilize their optimizations• The provers only must return a clausal tableaux proof or a resolution proof
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