
Literal Projection and Circumscription
– Extended Version, July 4, 2009 –

Christoph Wernhard

Technische Universität Dresden
christoph.wernhard@tu-dresden.de

Abstract. We develop a formal framework intended as a preliminary
step for a single knowledge representation system that provides differ-
ent representation techniques in a unified way. In particular we consider
first-order logic extended by techniques for second-order quantifier elim-
ination and non-monotonic reasoning. In this paper two independent
results are developed. The background for the first result is literal pro-
jection, a generalization of second-order quantification which permits, so
to speak, to quantify upon an arbitrary sets of ground literals, instead of
just (all ground literals with) a given predicate symbol. We introduce an
operator raise that is only slightly different from literal projection and
can be used to define a generalization of predicate circumscription in a
straightforward and compact way. We call this variant of circumscription
scope-determined. Some properties of raise and scope-determined circum-
scription, also in combination with literal projection, are then shown. A
previously known characterization of consequences of circumscribed for-
mulas in terms of literal projection is generalized from propositional to
first-order logic and proven on the basis of the introduced concepts. The
second result developed in this paper is a characterization stable models
in terms of circumscription. Unlike traditional characterizations, it does
not recur onto syntactic notions like reduct and fixed-point construction.
It essentially renders a recently proposed “circumscription-like” charac-
terization in a compact way, without involvement of a non-classically
interpreted connective.

Table of Contents

1 Introduction . 2
2 Notation and Preliminaries . 3
3 The Raise Operator . 7
4 Definition of Circumscription in Terms of Raise . 8
5 Well-Foundedness . 10
6 Interplay of Projection and Circumscription . 10
7 Answer Sets with Stable Model Semantics . 12
8 Conclusion . 15
A Proofs . 17

A.1 Proof of the Proposition in Section 3 . 17
A.2 Proof of the Theorem in Section 4 . 18
A.3 Proofs of the Propositions and the Theorem in Section 6 20

B Reduct-Based Notions of Answer Sets . 23

2 Section 1

1 Introduction

We develop a formal framework intended as a preliminary step for a single knowl-
edge representation system that provides different representation techniques in
a unified way. In particular we consider first-order logic extended by techniques
for second-order quantifier elimination and non-monotonic reasoning.

Second-order quantifier elimination permits to express a large number of
knowledge representation techniques (see for example [6]), including abduction,
modularization of knowledge bases and the processing of circumscription. It
is also closely related to knowledge compilation [14]. Variants of second-order
quantifier elimination also appear under names such as computation of uniform
interpolants, forgetting, and projection. Restricted to propositional formulas it is
called elimination of Boolean quantified variables.

We focus here on a particular generalization of second-order quantifier elim-
ination, the computation of literal projection [11, 12]. Literal projection general-
izes second-order quantification by permitting, so to speak, to quantify upon an
arbitrary set of ground literals, instead of just (all ground literals with) a given
predicate symbol. Literal projection allows, for example, to express predicate
quantification upon a predicate just in positive or negative polarity. Eliminating
such a quantifier from a formula in negation normal form results in a formula
that might still contain the quantified predicate, but only in literals whose po-
larity is complementary to the quantified one. This polarity dependent behavior
of literal projection is essential for the relationship to non-monotonic reasoning
that is investigated in this paper.

In particular, we consider circumscription and, based on it, the stable model
semantics, which underlies many successful applications developed during the
last decade. It is well-known that the processing of circumscription can be ex-
pressed as a second-order quantifier elimination task [1]. The formalization of
circumscription investigated here does not just rely on literal projection as a
generalization of second-order quantification, but utilizes the polarity depen-
dent behavior of literal projection to obtain a particular straightforward and
compact characterization. The concrete contributions of this paper are:

– The introduction of an operator raise that is only slightly different from
literal projection and can be used to define a generalization of parallel cir-
cumscription with varied predicates in a straightforward and compact way.

Like literal projection, the raise operator is defined in terms of semantic prop-
erties only, and is thus independent of syntactic properties or constructions.
Some properties of this operator and circumscription, also in interaction with
literal projection, are then shown (Sect. 3–6).

– The characterization of consequences of circumscribed formulas in terms
of literal projection. We make a known result given in [8] more precise by
providing a thorough proof and generalizing it from propositional to first-
order formulas.

Notation and Preliminaries 3

– A definition of answer sets according to the stable model semantics in terms
of circumscription. Unlike the common definitions of stable models, it does
not recur onto syntactic notions like reduct and fixed-point construction.
It is essentially an adaption of the “circumscription-like” definition recently
proposed in [4, 5]. In contrast to that definition, it does not involve a specially
interpreted rule forming connective (Sect. 7).

The paper is structured as follows: Preliminaries are given in Section 2, including
a description of the used semantic framework and a summary of background
material on literal projection. In Sections 3–7 the proper contributions of this
paper are described and formally stated. Proofs of propositions and theorems can
be found in Appendix A. Details on the relationship of the introduced definition
of stable models to characterizations in terms of reduct in Appendix B. This
report is a revised and extended version of the workshop contribution [13].

2 Notation and Preliminaries

Symbols. We use the following symbols, also with sub- and superscripts, to
stand for items of types as indicated in the following table (precise definitions
of these types are given later on in this section). They are considered implicitly
as universally quantified in definition, theorem and proposition statements.

F,G – Formula
L – Literal
S – Set of ground literals (also called literal scope)
M – Consistent set of ground literals

I, J,K – Structure
β – Variable assignment

Notation. Unless specially noted, we assume that a first-order formula is con-
structed from first-order literals, truth value constants >,⊥, the unary connec-
tive ¬, binary connectives ∧,∨ and the first-order quantifiers ∀ and ∃. We write
the positive (negative) literal with atom A as +A (−A). Variables are x, y, z,
also with subscripts. As meta-level notation with respect to this syntax we use
implication →, biconditional ↔ and n-ary versions of the binary connectives.

A clause is a sentence of the form ∀x1 . . . ∀xn(L1 ∨ . . .∨Lm), where n,m ≥ 0
and the Li for i ∈ {1, . . . ,m} are literals. Since all variables in a clause are
universally quantified, we sometimes do not write its quantifier prefix.

We assume a fixed first-order signature with at least one constant symbol.
The sets of all ground terms and all ground literals, with respect to this signature,
are denoted by TERMS and ALL, respectively.

The Projection Operator and Literal Scopes. A formula in general is like
a first-order formula, but in its construction two further operators, project(F, S)
and raise(F, S), are permitted, where F is a formula and S specifies a set of
ground literals. We call a set of ground literals in the role as argument to project
or raise a literal scope. We do not define here a concrete syntax for specifying

4 Section 2

literal scopes and just speak of a literal scope, referring to the actual literal
scope in a semantic context as well as some expression that denotes it in a
syntactic context. The formula project(F, S) is called the literal projection of F
onto S. Literal projection generalizes existential second-order quantification [11]
(see also Sect. 4 below). It will be further discussed in this introductory section
(see [11, 12] for more thorough material). The semantics of the raise operator
will be introduced later on in Sect. 3.

Interpretations. We use the notational variant of the framework of Herbrand
interpretations described in [11]: An interpretation I is a pair 〈I, β〉, where I is
a structure, that is, a set of ground literals that contains for all ground atoms A
exactly one of +A or −A, and β is a variable assignment, that is, a mapping of
the set of variables into TERMS.

Satisfaction Relation and Semantics of Projection. The satisfaction re-
lation between interpretations I = 〈I, β〉 and formulas is defined by the clauses
in Tab. 1, where L matches a literal, F, F1, F2 match a formula, and S matches
a literal scope. In the table, two operations on variable assignments β are used:
If F is a formula, then Fβ denotes F with all variables replaced by their image
in β; If x is a variable and t a ground term, then β t

x is the variable assignment
that maps x to t and all other variables to the same values as β. Entailment and
equivalence are straightforwardly defined in terms of the satisfaction relation.
Entailment: F1 |= F2 holds if and only if for all 〈I, β〉 such that 〈I, β〉 |= F1

it holds that 〈I, β〉 |= F2. Equivalence: F1 ≡ F2 if and only if F1 |= F2 and
F2 |= F1.

Intuitively, the literal projection of a formula F onto scope S is a formula
that expresses about literals in S the same as F , but expresses nothing about
other literals. The projection is equivalent to a formula without the projection
operator, in negation normal form, where all ground instances of literals occur-
ring in it are members of the projection scope. The semantic definition of literal
projection in Tab. 1 can be alternatively expressed as: An interpretation 〈I, β〉
satisfies project(F, S) if and only if there is a structure J such that 〈J, β〉 satis-
fies F and I can be obtained from J by replacing literals that are not in S with
their complements. This includes the special case I = J , where no literals are
replaced.

Table 1. The Satisfaction Relation with the Semantic Definition of Literal Projection

〈I, β〉 |= L iffdef Lβ ∈ I
〈I, β〉 |= >
〈I, β〉 6|= ⊥
〈I, β〉 |= ¬F iffdef 〈I, β〉 6|= F
〈I, β〉 |= F1 ∧ F2 iffdef 〈I, β〉 |= F1 and 〈I, β〉 |= F2

〈I, β〉 |= F1 ∨ F2 iffdef 〈I, β〉 |= F1 or 〈I, β〉 |= F2

〈I, β〉 |= ∀x F iffdef for all t ∈ TERMS it holds that 〈I, β t
x 〉 |= F

〈I, β〉 |= ∃x F iffdef there exists a t ∈ TERMS such that 〈I, β t
x 〉 |= F

〈I, β〉 |= project(F, S) iffdef there exists a J such that 〈J, β〉 |= F and J ∩ S ⊆ I

Notation and Preliminaries 5

Relation to Conventional Model Theory. Literal sets as components of
interpretations permit the straightforward definition of the semantics of literal
projection given in the last clause in Tab. 1. The set of literals I of an in-
terpretation 〈I, β〉 is called “structure”, since it can be considered as repre-
sentation of a structure in the conventional sense used in model theory: The
domain is the set of ground terms. Function symbols f with arity n ≥ 0 are
mapped to functions f ′ such that for all ground terms t1, ..., tn it holds that
f ′(t1, ..., tn) = f(t1, ..., tn). Predicate symbols p with arity n ≥ 0 are mapped to
{〈t1, ..., tn〉 | +p(t1, ..., tn) ∈ I}. Moreover, an interpretation 〈I, β〉 represents a
conventional second-order interpretation [2] (if predicate variables are considered
as distinguished predicate symbols): The structure in the conventional sense cor-
responds to I, as described above, except that mappings of predicate variables
are omitted. The assignment is β, extended such that all predicate variables p
are mapped to {〈t1, ..., tn〉 | +p(t1, ..., tn) ∈ I}.
Some More Notation. The following table specifies symbolic notation for
(i) the complement of a literal, (ii) the set of complement literals of a given set
of literals, (iii) the set complement of a set of ground literals, (iv) the set of all
positive ground literals, (v) the set of all negative ground literals, (vi) the set of
all ground literals whose predicate symbol is from a given set, and (vii, viii) a
structure that is like a given one, except that it assigns given truth values to a
single given ground atom or to all ground atoms in a given set, respectively.

(i) If A is an atom, then +̃A def= −A, and −̃A def= +A. The literal L̃ is called
the complement of L.

(ii) S̃ def= {L̃ | L ∈ S}.
(iii) S def= ALL− S.
(iv) POS def= {+A | +A ∈ ALL}.
(v) NEG def= {−A | −A ∈ ALL}.

(vi) P̂ is the set of all ground literals whose predicate is P or is in P , resp.,
where P is a predicate symbol, or a tuple or set of predicate symbols.

(vii) I[L] def= (I − {L̃}) ∪ {L}.
(viii) I[M] def= (I − M̃) ∪M.

Literal Base and Related Concepts. The literal base L(F) of a first-order
formula F in negation normal form is the set of all ground instances of lit-
erals in F . The following formal definition generalizes this notion straightfor-
wardly for formulas that are not in negation normal form and possibly include
the project and raise operator: L(L) is the set of all ground instances of L;
L(>) def= L(⊥) def= {}; L(¬F) def= L̃(F); L(F ⊗ G) def= L(F) ∪ L(G) if ⊗ is ∧ or
∨; L(⊗xF) def= L(⊗(F, S)) def= L(F) if ⊗ is a quantifier or the project or raise
operator, respectively.

We call the set of ground literals “about which a formula expresses some-
thing” its essential literal base, made precise in Def. 1 (see [11, 12] for a more
thorough discussion). It can be proven that essential literal base of a formula is
a subset of its literal base. The essential literal base is independent of syntactic
properties: equivalent formulas have the same essential literal base.

6 Section 2

Table 2. Properties of Literal Projection

(i) F |= project(F, S)
(ii) If F1 |= F2, then project(F1, S) |= project(F2, S)

(iii) If F1 ≡ F2, then project(F1, S) ≡ project(F2, S)
(iv) If S1 ⊇ S2, then project(F, S1) |= project(F, S2)
(v) project(project(F, S1), S2) ≡ project(F, S1 ∩ S2)

(vi) F1 |= project(F2, S) if and only if project(F1, S) |= project(F2, S)
(vii) project(F,ALL) ≡ F

(viii) project(F,L(F)) ≡ F
(ix) project(>, S) ≡ >
(x) project(⊥, S) ≡ ⊥

(xi) F is satisfiable if and only if project(F, S) is satisfiable
(xii) LE(project(F, S)) ⊆ S

(xiii) LE(project(F, S)) ⊆ LE(F)
(xiv) If project(F, S) |= F, then LE(F) ⊆ S
(xv) project(F, S) ≡ project(F,L(F) ∩ S)

(xvi) F1 |= F2 if and only if project(F1,L(F2)) |= F2

(xvii) If no instance of L is in S, then project(L, S) ≡ >
(xviii) If all instances of L are in S, then project(L, S) ≡ L
(xix) project(F1 ∨ F2, S) ≡ project(F1, S) ∨ project(F2, S)
(xx) project(F1 ∧ F2, S) |= project(F1, S) ∧ project(F2, S)

(xxi) If L(F1) ∩ L̃(F2) ⊆ S ∩ eS then
project(F1 ∧ F2, S) ≡ project(F1, S) ∧ project(F2, S)

(xxii) project(∃xF, S) ≡ ∃x project(F, S)
(xxiii) project(∀xF, S) |= ∀x project(F, S)

Definition 1 (Essential Literal Base). The essential literal base of a for-
mula F, in symbols LE(F), is defined as LE(F) def= {L | L ∈ ALL and there exists
an interpretation 〈I, β〉 such that 〈I, β〉 |= F and 〈I[L̃], β〉 6|= F}.

Properties of Literal Projection. A summary of properties of literal pro-
jection is displayed in Tab. 2 and 3. Most of them follow straightforwardly from
the semantic definition of project shown in Tab. 1 [12]. The more involved proof
of Tab. 2.xxi (and the related Tab. 3.v) can be found in [11, 12]. The properties
in Tab. 3 strengthen properties in Tab. 2, but apply only to formulas that sat-
isfy a condition related to their essential literal base. These formulas are called
E-formulas and are defined as follows:

Definition 2 (E-Formula). A formula F is called E-formula if and only if
for all interpretations 〈I, β〉 and consistent sets of ground literals M such that
〈I, β〉 |= F and M ∩ LE(F) = ∅ it holds that 〈I[M̃], β〉 |= F.

First-order formulas in negation normal form without existential quantifier –
including propositional formulas and first-order clausal formulas – are E-formu-
las. Being an E-formula is a property that just depends on the semantics of a
formula, that is, an equivalent to an E-formula is also an E-formula. See [11, 12]
for more discussion.1
1 An example that is not an E-formula is the sentence F def= ∀x +r(x, f(x)) ∧
∀x∀y(−r(x, y) ∨ +r(x, f(y))) ∧ ∃x∀y(−r(x, y) ∨ +p(y)). Let the domain be the set

The Raise Operator 7

Table 3. Properties of Literal Projection for E-Formulas E

(i) project(E,LE(E)) ≡ E (strengthens Tab. 2.viii)
(ii) LE(E) ⊆ S if and only if project(E,S) ≡ E (strengthens Tab. 2.xiv)

(iii) project(E,S) ≡ project(E,LE(E) ∩ S) (strengthens Tab. 2.xv)
(iv) F |= E if and only if project(F,LE(E)) |= E (strengthens Tab. 2.xvi)

(v) If LE(E1) ∩ L̃E(E2) ⊆ S ∩ eS then
project(E1 ∧ E2, S) ≡ project(E1, S) ∧ project(E2, S) (strengthens Tab. 2.xxi)

3 The Raise Operator

The following operator raise is only slightly different from literal projection and,
as we will see later on, can be used to define a generalization of parallel circum-
scription with varied predicates in a straightforward and compact way.

Definition 3 (Raise).
〈I, β〉 |= raise(F, S) iffdef there exists a J such that

〈J, β〉 |= F and
J ∩ S ⊂ I ∩ S.

The definition of raise is identical to that of literal projection (Tab. 1), with
the exception that J ∩ S and I ∩ S are related by the proper subset instead of
the subset relationship (assuming that condition J ∩ S ⊆ I in Tab. 1 is written
equivalently as J ∩ S ⊆ I ∩ S).

The name “raise” suggests that a model 〈I, β〉 of raise(F, S) is not “the
lowest” model of F , in the sense that there exists another model 〈J, β〉 of F
with the property J ∩ S ⊂ I ∩ S. An equivalent specification of the condition
J ∩ S ⊂ I ∩ S in the definition of raise provides further intuition on its effect:
A literal scope S can be partitioned into three disjoint subsets Sp, Sn, Spn such
that Sp (Sn) is the set of positive (negative) literals in S whose complement
is not in S, and Spn is the set of literals in S whose complement is also in S.
Within Def. 3, the condition J ∩ S ⊂ I ∩ S can then be equivalently expressed
by the conjunction of J ∩ (Sp ∪Sn) ⊂ I ∩ (Sp ∪Sn) and J ∩Spn = I ∩Spn. That
is, with respect to members of S whose complement is not in S, the structure J
must be a proper subset of I, and with respect to the other members of S it
must be identical to I.

Proposition 1 below shows some properties of the raise operator: It is mono-
tonic (Prop. 1.i). From this follows that it is a “semantic” operator in the sense
that for equivalent arguments the values are equivalent too (Prop. 1.ii). Like
projection, the raise operator distributes over disjunction (Prop. 1.iii). Proposi-
tion 1.iv follows from monotonicity. Proposition 1.v shows that for scopes that
contain exactly the same atoms positively as well as negatively, raise is inconsis-
tent. Propositions 1.vi and 1.vi show the interplay of raise with projection onto

of all terms fn(a) where n ≥ 0. For each member T of the domain it can be verified
that +p(T) /∈ LE(F). On the other hand, an interpretation that contains −p(T) for
all members T of the domain cannot be a model of F .

8 Section 4

the same scope. Proposition 1.viii provides a characterization of literal projec-
tion in terms of raise and atom projection [11], a restricted form of projection
where the polarity of the scope members is not taken into account, which can
be expressed as literal projection onto scopes S constrained by S = S̃.

Proposition 1 (Properties of Raise).
(i) If F1 |= F2, then raise(F1, S) |= raise(F2, S).

(ii) If F1 ≡ F2, then raise(F1, S) ≡ raise(F2, S).
(iii) raise(F1 ∨ F2, S) ≡ raise(F1, S) ∨ raise(F2, S).
(iv) raise(F1 ∧ F2, S) |= raise(F1, S) ∧ raise(F2, S).
(v) If S = S̃, then raise(F, S) ≡ ⊥.
(vi) raise(project(F, S), S) ≡ raise(F, S).

(vii) project(raise(F, S), S) ≡ raise(F, S).
(viii) project(F, S) ≡ project(F, S ∪ S̃) ∨ raise(F, S).

4 Definition of Circumscription in Terms of Raise

The following definition specifies a characterization of circumscription in terms
of raise, as we will first outline informally and then show more precisely.

Definition 4 (Scope-Determined Circumscription). The scope-determined
circumscription of formula F with respect to literal scope S, in symbols circ-s(F, S),
is a formula that involves the raise operator and is defined as:

circ-s(F, S) def= F ∧ ¬raise(F, S).

The name scope-determined indicates that a literal scope, that is, a set of ground
literals, is used to determine what is circumscribed. Parallel circumscription of
predicate constants P in sentence F with varied predicate constants Z [9] can be
expressed as the special case of scope-determined circumscription onto a scope
that is the set of all ground literals L such that either

1. L is positive and its predicate is in P, or
2. The predicate of L is neither in P nor in Z.

In other words, the scope contains the circumscribed predicates just positively
(the positive literals according to item 1.), and the “fixed” predicates in full (all
positive as well as negative literals according to item 2.). Since the literal scope S
in circ-s(F, S) can be an arbitrary set of literals, scope-determined circumscrip-
tion is more general than parallel circumscription with varied predicates: Model
maximization conditions can be expressed by means of scopes that contain neg-
ative literals but not their complements. Furthermore, it is possible to express
minimization, maximization and variation conditions that apply only to a subset
of the instances of a predicate.

We now make precise how scope-determined circumscription relates to the
established definition of predicate circumscription by means of second-order
quantification [9, 1, 6]. The following definition specifies a second-order sentence

Definition of Circumscription in Terms of Raise 9

CIRC[F ;P ;Z] that is called parallel circumscription of predicate constants P in
F with varied predicate constants Z in [9] and is straightforwardly equivalent
to the sentence called second-order circumscription of P in F with variable Z
in [1, 6]:

Definition 5 (Second-Order Circumscription). Let F be a first-order sen-
tence and let P, P ′, Z, Z ′ be mutually disjoint tuples of distinct predicate symbols
such that: P = p1, . . . , pn and P ′ = p′1, . . . , p

′
n where n ≥ 0; both Z and Z ′ have

the same length ≥ 0; members of P ′ and P with the same index, as well as
members of Z ′ and Z with the same index, are of the same arity; and P ′ and Z ′

do not contain predicate symbols in F . Let F ′ be the formula that is obtained
from F by replacing each predicate symbol that is in P or Z by the predicate
symbol with the same index in P ′ or Z ′, respectively. For i ∈ {1, . . . , n} let xi

stand for x1, . . . , xk, where k is the arity of predicate symbol pi. Let P ′<P stand
for

n∧
i=1

∀xi(p′i(xi)→ pi(xi)) ∧ ¬
n∧

i=1

∀xi(p′i(xi)↔ pi(xi))).

Considering the predicate symbols in P ′ and Z ′ as predicate variables, the
second-order circumscription of P in F with variable Z, written CIRC[F ;P ;Z],
is then defined as:

CIRC[F ;P ;Z] def= F ∧ ¬∃P ′, Z ′ (F ′ ∧ P ′<P).

Existential second-order quantification can be straightforwardly expressed with
literal projection: ∃p G corresponds to project(G,S), where S is the set of all
ground literals with a predicate other than p. From Tab. 2.xv it can be derived
that also a smaller projection scope is sufficient: project(G,S) is equivalent to
project(G,S′) for all subsets S′ of S that contain those literals of S whose pred-
icate symbol occurs in G. Accordingly, CIRC[F ;P ;Z] can be expressed straight-
forwardly in terms of literal projection instead of the second-order quantification:

Definition 6 (Second-Order Circumscription in Terms of Projection).
Let F be a first-order formula and let P, P ′, Z, Z ′ be tuples of predicate symbols
as specified in the definition of CIRC (Def. 5). Let Q be the set of predicate
symbols in F that are neither in P nor in Z. Then CIRC-PROJ[F ;P ;Z] is a
formula with the projection operator, defined as:

CIRC-PROJ[F ;P ;Z] def= F ∧ ¬project(F ′ ∧ P ′<P, P̂ ∪ Q̂).

The Q parameter in Def. 6 is the set of the “fixed” predicates. The set of liter-
als (P̂ ∪ Q̂) suffices as projection scope, since the quantified body of the right
conjunct of CIRC[F ;P ;Z], that is, (F ′∧P ′<P), contains – aside of the quantified
predicate symbols from P ′, Z ′ – just predicate symbols that are in P or in Q.

The following theorem makes precise how second-order circumscription can
be expressed with scope-determined circumscription. Its proof formally relates
second-order circumscription expressed by projection (Def. 6) with circumscrip-
tion defined in terms of of the raise operator (Def. 4).

10 Section 6

Theorem 1 (Second-Order and Scope-Determined Circumscription).
Let F be a first-order formula and let P, P ′, Z, Z ′ be tuples of predicate symbols
as specified in the definition of CIRC (Def. 5). Let Q be the set of predicate
symbols in F that are neither in P nor in Z. Then

CIRC-PROJ[F ;P ;Z] ≡ circ-s(F, (P̂ ∩ POS) ∪ Q̂).

5 Well-Foundedness

As discussed in [9], circumscription can in general only be applied usefully to a
sentence F if all models of F extend some model of F that is minimal with respect
to the circumscribed predicates. The concept of well-foundedness [9] makes this
property precise. We show that it can be expressed in a compact way in terms of
projection. This characterization facilitates to prove properties of circumscrip-
tion that have well-foundedness as a precondition, as for example Prop. 3 and
Theorem 2 below.

Definition 7 (Well-Founded Formula). F is called well-founded with respect
to S if and only if

F |= project(circ-s(F, S), S).

In this definition, the literal scope S can be an arbitrary set of literals, corre-
sponding to variants of circumscription as indicated in Sect. 4. We now explicate
how this definition renders the definition of well-foundedness in [9], which is de-
fined for the special case of circumscription of a single predicate p with varied
predicates Z. That definition is as as follows (adapted to our notation): Let F
be a first-order sentence, p be predicate symbol and Z be a tuple of predicate
symbols. The sentence F is called well-founded with respect to (p;Z) if for every
model I of F there exists a model J of CIRC[F ; p;Z] such that I and J differ only
in how they interpret p and Z and the extent of p in J is a (not necessarily strict)
subset of its extent in I. We can convert this definition straightforwardly into our
semantic framework: Let Q be the set of predicate symbols in F that are different
from p and not in Z. The sentence F is then well-founded with respect to (p;Z)
if for all interpretations 〈I, β〉 such that 〈I, β〉 |= F there exists an interpreta-
tion 〈J, β〉 such that (1.) 〈J, β〉 |= CIRC-PROJ[F ; p;Z], (2.) J ∩ p̂ ∩ POS ⊆ ∩I,
and (3.) J ∩ Q̂ = I ∩ Q̂. The project operator allows to express this converted
definition compactly: Let S be the literal scope ((p̂∩POS)∪ Q̂). By Theorem 1,
CIRC-PROJ[F ; p;Z] is equivalent to circ-s(F, S). Furthermore, given that I and J

are structures and Q̂ = ˜̂
Q, the conjunction of items (2.) and (3.) above is equiv-

alent to J ∩ S ⊆ I. By the definition of project (Tab. 1), the statement that
there exists an interpretation 〈J, β〉 satisfying items (1.)–(3.) can be expressed
as 〈I, β〉 |= project(circ-s(F, S), S).

6 Interplay of Projection and Circumscription

The following proposition shows properties of projection nested within circum-
scription. It is independent of the well-founded property.

Interplay of Projection and Circumscription 11

Proposition 2 (Circumscribing Projections).
(i) circ-s(F, S) |= circ-s(project(F, S), S).

(ii) circ-s(project(F, S), S) |= circ-s(project(F, S ∪ S̃), S).

In the special case where S ∪ S̃ = ALL, which holds for example if S = POS,
the two entailments Prop. 2.i and Prop. 2.ii can be combined to the equivalence
circ-s(project(F, S), S) ≡ circ-s(F, S). From this equivalence, it can be derived
that two formulas which express the same about positive literals (that is, have
equivalent projections onto POS) have the same minimal models (that is, have
equivalent circumscriptions for scope POS).

The following proposition concerns circumscription nested within projection.
It is a straightforward consequence of the definition of well-founded along with
Tab. 2.vi and 2.ii.

Proposition 3 (Projecting Circumscriptions). If F is well-founded with
respect to S, then

project(circ-s(F, S), S) ≡ project(F, S).

From this proposition follows that if two well-founded formulas have equivalent
circumscriptions for some scope, then also their projections onto that scope are
equivalent. With properties of projection, it also follows that if S is a positive lit-
eral scope (that is, S ⊆ POS) then project(circ-s(F,POS), S) ≡ project(F, S). This
equivalence can be applied to provide a straightforward justification for applying
methods to compute minimal models also to projection computation onto posi-
tive scopes: We consider methods that compute for a given input formula F an
output formula F ′ that satisfies syntactic criteria (for example correspondence to
a tableau) which permit projection computation with low computational effort,
such that projection computation is in essence already performed by comput-
ing F ′. Assume that the output formula has the same minimal models as the
input formula, that is, circ-s(F ′,POS) ≡ circ-s(F,POS). If F ′ is well-founded,
for positive literal scopes S it then follows that project(F ′, S) ≡ project(F, S).
A tableau constructed by the hyper tableau calculus can indeed be viewed as
representation of such a formula F ′ [14].

Literal forgetting is a variant of literal projection that can be defined as
forget(F, S) def= project(F, S) and is investigated for propositional logic in [8]. It
is shown there that circumscription, or more precisely the formulas that are
entailed by circumscriptions, can be characterized in terms of literal forgetting.
Two such characterizations are given as Proposition 22 in [8], where the simpler
one applies if the literal base of the entailed formula is restricted in a certain
way.

These characterizations are rendered here in terms of literal projection as
Theorem 2.ii and 2.iii below, where we generalize and make more precise the
statements given in [8] in the following four respects: (1.) We generalize the
characterizations to first-order logic. (2.) We use preconditions on the entailed
formulas that do not refer to their literal base, a syntactic notion. This is dis-
cussed more in depth after the theorem statement. (3.) We provide a thorough

12 Section 7

proof. The proof given in [8] just shows the characterizations as straightforward
consequence of [10, Theorems 2.5 and 2.6], for which in turn no proof is given,
neither in [10], nor in [7] which is referenced by [10]. (4.) We add a third ba-
sic variant (Theorem 2.i) for consequents that are stronger restricted than in
Theorem 2.ii.

This basic variant is actually a straightforward generalization of Proposi-
tion 12 in [9], which is introduced as capturing the intuition that, under the
assumption of well-foundedness, a circumscription provides no new information
about the fixed predicates, and only “negative” additional information about
the circumscribed predicates.

Theorem 2 (Consequences of Circumscription). If F is well-founded with
respect to S, then

circ-s(F, S) |= G

is equivalent to at least one of the following entailments, depending on additional
preconditions on G:

(i) F |= G, if G ≡ project(G,S);

(ii) F |= project(F ∧G,S), if G ≡ project(G,S ∪ S̃);

(iii) F |= project(F ∧ ¬project(F ∧ ¬G,S), S).

Theorems 2.ii and 2.i involve preconditions on G which are expressed somewhat
abstractly with the project operator. This is a way to generalize more concrete
preconditions which come in two variants: One for E-formulas G, based on the
semantic notion of essential literal base (LE), and the other for formulas G in
general, based on the syntactic notion of literal base (L). We have seen a similar
split into variants before, with properties of projection that are displayed in
Table 3 and 2, respectively.

If G is an E-formula, then by Tab. 3.ii the precondition G ≡ project(G,S)
of Theorem 2.i is equivalent to LE(G) ⊆ S. For arbitrary formulas G, by
Tab. 2.viii and 2.xv the precondition G ≡ project(G,S) is implied by the ex-
istence of a formula G′ such that G′ ≡ G and L(G′) ⊆ S. The precondition
G ≡ project(G,S ∪ S̃) of Theorem 2.ii can of course be expressed analogously in
two such variants.

7 Answer Sets with Stable Model Semantics

In [4, 5] a characterization of stable models in terms of a formula translation
that is similar to the second-order circumscription has been presented. Roughly,
it differs from circumscription in that only certain occurrences of predicates
are circumscribed, which are identified by their position with respect to a non-
classical rule forming operator. We develop a variant of this characterization of
stable models that is in terms of circumscription. It involves no non-classical
operators. Instead, to indicate occurrences be circumscribed, it puts atoms into
term position, wrapped by one of two special predicates.

Answer Sets with Stable Model Semantics 13

We let the symbols ◦ and • denote these predicates. They are unary, and
we write them without parentheses – for example •p(a). With them, we now
formally define a notion of logic program. Its correspondence to the more con-
ventional view of a logic program as formed by non-classical operators will then
be indicated.

Definition 8 (Logic Program).
(i) A rule clause is a clause2 of the form

m∨
i=1

−◦Ai ∨
n∨

i=1

+•Bi ∨
o∨

i=1

+◦Ci ∨
p∨

i=1

−•Di,

where k,m, n, o, p ≥ 0 and the subscripted A,B,C,D are terms.
(ii) For a rule clause of the form specified in (8.i), the rule clause (

∨m
i=1−◦Ai∨∨n

i=1+•Bi) is called its negated body, and the rule clause (
∨o

i=1+◦Ci∨
∨p

i=1−•Di)
is called its head.

(iii) A logic program is a conjunction of rule clauses.
(iv) The symbol SYNC stands for the formula ∀x(+•x↔ +◦x).

Conventionally, logic programs are typically notated by means of a special syntax
with truth value constants (>,⊥), conjunction (,), disjunction (;), negation as
failure (not) and rule forming (→) as connectives. A rule clause according to
(Def. 8.i) is then written as a rule of the form

A1, . . . , Am, notB1, . . . , notBn → C1; . . . ;Co; notD1; . . . ; notDp, (i)

where m,n, o, p ≥ 0 and the subscripted A,B,C,D are atoms. If m = n = 0,
then the left side of the rule is >; if o = p = 0, then the right side is ⊥.

The following definition specifies a formula ans(F) whose models are exactly
those interpretations that represent an answer set of F according to the stable
model semantics.

Definition 9 (Answer Set). For all formulas F with • and ◦ as only predicate
symbols:

ans(F) def= circ-s(F,POS ∪ •̂) ∧ SYNC.

In the definition of ans(F), the scope of the circumscription, (POS∪ •̂), is equal
to ((◦̂ ∩ POS) ∪ •̂) which matches the right side of Theorem 1, indicating that
ans(F) can also be expressed in terms of second-order circumscription.

We now explicate the relationship of the characterization of stable models by
ans(F) to the characterization in [4, 5], and justify in this way that ans(F) indeed
characterizes stable models. Relationships to reduct-based characterizations of
answer sets are shown in Appendix B. We limit our considerations to logic pro-
grams according to Def. 8.iii, which are clausal sentences (the characterization
in [4, 5] applies also to nonclausal sentences).

Let F be a logic program. Let P = p1, . . . , pn be the function symbols of the
principal terms in F (that is, the predicate symbols if the wrapper predicates
2 Recall that a clause as specified in Sect. 2 may contain universally quantified vari-

ables. The implicit quantifier prefixes of clauses are not written in this definition.

14 Section 7

◦ and • are dropped). Let P ′ = p′1, . . . , p
′
n and Q = q1, . . . , qn be tuples of

distinct predicate symbols which are disjoint with each other and with P . We
use the following notation to express variants of F that are obtained by replacing
predicate symbols:

– We write F also as F [◦, •], to indicate that ◦ and • occur in it.
– The formula F [U, V], where U = u1, . . . , un and V = v1, . . . , vn are tuples of

predicate symbols is F [◦, •] with all atoms ◦(pi(t)) replaced by ui(t) and all
atoms •(pi(t)) replaced by ui(t), where t matches the respective argument
terms. As a special case, F [P, P] is then F [◦, •] with all atoms of the form
◦A or •A replaced by A.

Let cnv(F) denote F converted into the syntax of logic programs with non-
classical operators used by [4, 5] (an explicit such conversion is given in Ap-
pendix B as Def. B3.iii). Let SM(cnv(F)) be the second-order sentence that
characterizes the stable models of cnv(F) according to [4, 5]. The following equiv-
alence can be verified, where P ′<P has the same meaning as in Def. 5:

SM(cnv(F)) ≡ F [P, P] ∧ ¬∃P ′(F [P ′, P] ∧ P ′<P). (ii)

The right side of equivalence (ii) is not a second-order circumscription, since P
occurs in F [P ′, P] as well as in P ′<P . To fit it into the circumscription scheme,
we replace the occurrences of P in F [P ′, P] by Q and add the requirement that
P and Q are equivalent: Let (P ↔ Q) stand for

∧n
i=1(pi(xi)↔ qi(xi)), where xi

has the same meaning as in Def. 5. The following equivalences then hold:

SM(cnv(F)) ∧ (P ↔ Q) (iii)
≡ F [P,Q] ∧ ¬∃P ′(F [P ′, Q] ∧ P ′<P) ∧ (P ↔ Q) (iv)
≡ CIRC[F [P,Q];P ; ∅] ∧ (P ↔ Q). (v)

To get rid of the biconditionals (P ↔ Q) in (iii), projection can be employed:
From SM(cnv(F)) ≡ project(SM(cnv(F)) ∧ (P ↔ Q), P̂) it follows that

SM(cnv(F)) ≡ project(CIRC[F [P,Q];P ; ∅] ∧ (P ↔ Q), P̂). (vi)

Based on equivalence (vi), the correspondence of ans(F) to SM(cnv(F)) can
be shown by proving that for two interpretations that are related in a certain
way the one is a model of SM(cnv(F)) if and only if the other is a model of
ans(F): Let I be a structure over P and Q as predicate symbols. Define I ′ as
the structure obtained from I by replacing all atoms pi(A) with ◦(pi(A)) and
all atoms qi(A) with •(qi(A)). Define I ′′ as the structure that contains the same
literals with predicate • as I ′ and contains +◦(A) (−◦(A)) whenever it contains
+•(A) (−•(A)). Thus the literals with predicate ◦ are chosen in I ′′ such that it
satisfies SYNC. The following statements are then equivalent:

Conclusion 15

〈I, β〉 |= SM(cnv(F)). (vii)
〈I, β〉 |= project(CIRC[F [P,Q];P ; ∅] ∧ (P ↔ Q), P̂). (viii)
〈I ′, β〉 |= project(CIRC[F [◦, •]; ◦; ∅] ∧ SYNC, ◦̂). (ix)
〈I ′, β〉 |= project(CIRC[F ; ◦; ∅] ∧ SYNC, ◦̂). (x)
〈I ′′, β〉 |= CIRC[F ; ◦; ∅] ∧ SYNC. (xi)
〈I ′′, β〉 |= circ-s(F,POS ∪ •̂) ∧ SYNC. (xii)
〈I ′′, β〉 |= ans(F). (xiii)

8 Conclusion

We have introduced an operator raise which can be used to define circumscription
in a compact way. The definition of that operator – in a semantic framework
where structures are represented by sets of literals – is identical to that of literal
projection, except that a set inclusion is replaced by a proper set inclusion.

An approach to an intuitive understanding of the raise operator is to consider
minimization as passed through from the “object language level” (the extents of
predicates is minimized) to the “meta level” of the semantic framework: Raise
expresses that model agreement conditions are minimized. Accordingly, the pred-
icate minimization conditions (commonly abbreviated by P ′ < P in definitions
of circumscription) have not to be made explicit with the raise operator, but are
“built-in”. In addition, the approach to “minimize model agreement conditions”
effects that the raise operator straightforwardly covers certain generalizations
of circumscription: Raise has – aside of a formula – just a set of literals as ar-
gument, such that, depending on the composition of this set, not only parallel
circumscription with varied predicates can be expressed, but also predicate maxi-
mization conditions. Moreover, also minimization, maximization and agreement
conditions can be expressed that apply only to a subset of the instances of a
predicate.

The characterization of circumscription in terms of the raise operator is im-
mediately useful to prove properties of circumscription in a streamlined way.
The introduced semantic framework with the project and raise operators is a
basis for future research, including the further elaboration of common and dif-
fering properties of both operators, the exploration of applications that involve
combinations of circumscription and projection, and the investigation of possi-
bilities for transferring and interleaving methods for non-monotonic reasoning,
such as computation of stable models, with methods for second-order quantifier
elimination and the closely related projection computation.

16 Section 8

References

1. P. Doherty, W. Lukaszewicz, and A. Sza las. Computing circumscription revisited:
A reduction algorithm. J. Autom. Reason., 18(3):297–338, 1997.

2. H.-D. Ebbinghaus, J. Flum, and W. Thomas. Einführung in die mathematische
Logik. Spektrum Akademischer Verlag, Heidelberg, 4th edition, 1996.

3. P. Ferraris. Answer sets for propositional theories. In LPNMR’05, pages 119–131,
2005.

4. P. Ferraris, J. Lee, and V. Lifschitz. A new perspective on stable models. In
IJCAI-07, pages 372–379, 2007.

5. P. Ferraris, J. Lee, and V. Lifschitz. Stable models and circumscription. 2009.
To appear; Draft retrieved on May 17th 2009 from https://www.cs.utexas.edu/
users/otto/papers/smcirc.pdf.

6. D. M. Gabbay, R. A. Schmidt, and A. Sza las. Second-Order Quantifier Elimination:
Foundations, Computational Aspects and Applications. CollegePublications, 2008.

7. M. Gelfond, H. Przymusinska, and T. Przymusinski. The extended closed world
assumption and its relationship to parallel circumscription. In ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems, pages 133–139, 1986.

8. J. Lang, P. Liberatore, and P. Marquis. Propositional independence – formula-
variable independence and forgetting. JAIR, 18:391–443, 2003.

9. V. Lifschitz. Circumscription. In Handbook of Logic in AI and Logic Programming,
volume 3, pages 298–352. Oxford University Press, 1994.

10. T. Przymusinski. An algorithm to compute circumscription. Artificial Intelligence,
83:59–73, 1989.

11. C. Wernhard. Literal projection for first-order logic. In JELIA 08, pages 389–402,
2008.

12. C. Wernhard. Automated Deduction for Projection Elimination. Number 324 in
Dissertationen zur Künstlichen Intelligenz (DISKI). AKA/IOS Press, 2009.

13. C. Wernhard. Literal projection and circumscription. In Int. Workshop on First-
Order Theorem Proving, FTP’09. University of Oslo, 2009.

14. C. Wernhard. Tableaux for projection computation and knowledge compilation.
In TABLEAUX 2009, pages 325–340, 2009.

Proofs 17

Appendix

A Proofs

In general, the proofs are presented formally by means of a table that shows
numbered proof steps in symbolic form and is followed by verbal justifications.
We use the notation described in Sect. 2.

A.1 Proof of the Proposition in Section 3

Proposition A1 (An Auxiliary Property of Structures).

J ∩ S ⊆ I if and only if I ∩ S̃ ⊆ J.

Proof. Easy to verify from the definition of structure as a set of ground literals
that contains for all ground atoms A exactly one of +A or −A.

ut
Proposition 1 (Properties of Raise).

(1.i) If F1 |= F2, then raise(F1, S) |= raise(F2, S).
(1.ii) If F1 ≡ F2, then raise(F1, S) ≡ raise(F2, S).

(1.iii) raise(F1 ∨ F2, S) ≡ raise(F1, S) ∨ raise(F2, S).
(1.iv) raise(F1 ∧ F2, S) |= raise(F1, S) ∧ raise(F2, S).
(1.v) If S = S̃, then raise(F, S) ≡ ⊥.
(1.vi) raise(project(F, S), S) ≡ raise(F, S).

(1.vii) project(raise(F, S), S) ≡ raise(F, S).
(1.viii) project(F, S) ≡ project(F, S ∪ S̃) ∨ raise(F, S).

Proof.
(1.i) Straightforward from the definition of raise.

(1.ii) Follows from Prop. 1.i.

(1.iii) Straightforward from the definition of raise.

(1.iv) Follows from Prop. 1.i.

(1.v) If S = S̃, then there do not exist structures I, J such that J ∩S ⊂ I ∩S
is satisfied, which is a constraint in the definition of raise.

(1.vi) Right-to-left follows from Prop. 1.i and Tab. 2.i. Left to right:
(1) 〈I, β〉 |= raise(project(F, S), S).
(2) There exists a J such that:

〈J, β〉 |= project(F, S) and J ∩ S ⊂ I ∩ S.
(3) There exist J,K such that:

〈K,β〉 |= F , K ∩ S ⊆ J , and J ∩ S ⊂ I ∩ S.
(4) There exists a K such that:

〈K,β〉 |= F and K ∩ S ⊂ I ∩ S.
(5) 〈I, β〉 |= raise(F, S).

Let 〈I, β〉 be an interpretation such that (1) holds. Step (4) follows from (3).
The remaining steps follow from expanding/contracting definitions of raise and
project.

18 Appendix A

(1.vii) Right-to-left follows from Tab. 2.i. Left-to-right:

(1) 〈I, β〉 |= project(raise(F, S), S).
(2) There exists a J such that:

〈J, β〉 |= raise(F, S) and J ∩ S ⊆ I.
(3) There exist J,K such that:

〈K,β〉 |= F , K ∩ S ⊂ J ∩ S, and J ∩ S ⊆ I.
(4) There exists a K such that:

〈K,β〉 |= F and K ∩ S ⊂ I ∩ S.
(5) 〈I, β〉 |= raise(F, S).

Let 〈I, β〉 be an interpretation such that (1) holds. Step (4) follows from (3).
The remaining steps follow from expanding/contracting definitions of raise and
project.

(1.viii)

(1) 〈I, β〉 |= project(F, S) iff
(2) There exists a J such that

〈J, β〉 |= F and J ∩ S ⊆ I iff
(3) There exists a J such that

〈J, β〉 |= F and J ∩ S ⊆ I and (I ∩ S ⊆ J or I ∩ S 6⊆ J) iff
(4) There exists a J such that

〈J, β〉 |= F and J ∩ S ⊆ I and J ∩ S̃ ⊆ I
or

There exists a J such that
〈J, β〉 |= F and J ∩ S ⊂ I ∩ S iff

(5) 〈I, β〉 |= project(F, S ∪ S̃) ∨ raise(F, S).

Let 〈I, β〉 be an interpretation such that (1) holds. In showing equivalence of (4)
to (3), Prop. A1 is used to justify that I ∩ S ⊆ J if and only if J ∩ S̃ ⊆ I. The
remaining equivalences are straightforward or follow from expanding/contracting
definitions of raise and project.

ut

A.2 Proof of the Theorem in Section 4

Theorem 1 (Second-Order Circumscription Expressed by circ-s). Let
F be a first-order formula and let P, P ′, Z, Z ′ be tuples of predicate symbols as
specified in the definition of CIRC (Def. 5). Let Q be the set of predicate symbols
in F that are neither in P nor in Z. Then

CIRC-PROJ[F ;P ;Z] ≡ circ-s(F, (P̂ ∩ POS) ∪ Q̂).

Proof. Let F, P, P ′, Q be as specified in the preconditions of the theorem. We
formally show the following equivalence which, considering the definitions of
CIRC and circ-s, straightforwardly entails the theorem:

project(F ′ ∧ P ′<P, P̂ ∪ Q̂) ≡ raise(F, (P̂ ∩ POS) ∪ Q̂). (xiv)

Proofs 19

We use the following additional symbolic notation: Let S[R\R′] for a set of
literals S and tuples of predicate symbols R,R′ with equal length and without
duplicate members stand for S with each predicate symbol that occurs in R at
a certain position in the tuple replaced by the predicate symbol that is in R′ at
that position.

The left-to-right direction of equivalence (xiv) can then be shown as follows:

(3) 〈I, β〉 |= project(F ′ ∧ P ′<P, P̂ ∪ Q̂).
(4) 〈J, β〉 |= F ′.
(5) 〈J, β〉 |= P ′< P .
(6) J ∩ (P̂ ∪ Q̂) ⊆ I.
(7) (J ∩ P̂ ′)[P ′\P] ∩ POS ⊂ J ∩ P̂ ∩ POS.
(8) J ∩ P̂ ⊆ I ∩ P̂ .
(9) (J ∩ P̂ ′)[P ′\P] ∩ POS ⊂ I ∩ P̂ ∩ POS.

(10) K def= (J − P̂) ∪ ((J ∩ P̂ ′)[P ′\P]).
(11) 〈K,β〉 |= F .
(12) K ∩ Q̂ ⊆ I.
(13) K ∩ P̂ ∩ POS ⊂ I ∩ P̂ ∩ POS.
(14) K ∩ ((P̂ ∩ POS) ∪ Q̂) ⊂ I ∩ ((P̂ ∩ POS) ∪ Q̂).
(15) 〈I, β〉 |= raise(F, (P̂ ∩ POS) ∪ Q̂).

Let 〈I, β〉 be an interpretation such that (3) holds. By the definition of project,
then there exists a structure J such that (4)–(6) hold. Step (7) is equivalent
to (5). Step (8) follows from (6). Step (9) follows from (8) and (7). Let K be as
defined in (10). Step (11) then follows from (4); step (12) from (6); and step (13)
from (9). Step (14) follows from (13) and (12). Finally, step (15) follows from (14)
and (11) along with definition of raise. We now show the right-to-left direction
of equivalence (xiv):

(16) 〈I, β〉 |= raise(F, (P̂ ∩ POS) ∪ Q̂).
(17) 〈J, β〉 |= F .
(18) J ∩ ((P̂ ∩ POS) ∪ Q̂) ⊂ I ∩ ((P̂ ∩ POS) ∪ Q̂).
(19) J ∩ P̂ ∩ POS ⊂ I ∩ P̂ ∩ POS.

(20) K def= (J − (P̂ ∪ P̂ ′)) ∪ (I ∩ P̂) ∪ ((J ∩ P̂)[P\P ′]).
(21) K ∩ P̂ = I ∩ P̂ .
(22) 〈K,β〉 |= F ′.
(23) K ∩ Q̂ ⊆ I.
(24) (K ∩ P̂ ′)[P ′\P] ∩ POS ⊂ I ∩ P̂ ∩ POS.

(25) (K ∩ P̂ ′)[P ′\P] ∩ POS ⊂ K ∩ P̂ ∩ POS.
(26) 〈K,β〉 |= P ′< P .
(27) K ∩ (P̂ ∪ Q̂) ⊆ I.
(28) 〈I, β〉 |= project(F ′ ∧ P ′<P, P̂ ∪ Q̂).

Let 〈I, β〉 be an interpretation such that (16) holds. By the definition of raise,
then there exists a structure J such that (17) and (18) hold. Step (19) follows

from (18), since Q̂ = ˜̂
Q. LetK be as defined in (20). Then, step (21) is immediate;

20 Appendix A

step (22) follows from (17); step (23) from (18); and step (24) from (19). Step (25)
follows from (24) and (21). Step (26) is equivalent to (25). Step (27) follows
from (23) and (21). Finally, step (28) follows from (27) and (22) along with the
definition of project.

ut

A.3 Proofs of the Propositions and the Theorem in Section 6

Proposition 2 (Circumscribing Projections).
(i) circ-s(F, S) |= circ-s(project(F, S), S).
(ii) circ-s(project(F, S), S) |= circ-s(project(F, S ∪ S̃), S).

Proof.
(2.i)

(1) circ-s(F, S) ≡
(2) F ∧ ¬raise(F, S) |=
(3) project(F, S) ∧ ¬raise(project(F, S), S) ≡
(4) circ-s(project(F, S))

That step (2) entails (3) follows from Tab. 2.i and Prop. 1.vi. The equivalences
follow from expanding/contracting the definition of circ-s.

(2.ii)

(1) circ-s(project(F, S), S) ≡
(2) project(F, S) ∧ ¬raise(project(F, S), S) ≡
(3) (project(F, S ∪ S̃) ∨ raise(F, S)) ∧ ¬raise(project(F, S), S) |=
(4) (project(F, S ∪ S̃) ∨ raise(project(F, S ∪ S̃), S)) ∧

¬raise(project(F, S ∪ S̃), S) ≡
(5) project(F, S ∪ S̃) ∧ ¬raise(project(F, S ∪ S̃), S) ≡
(6) circ-s(project(F, S ∪ S̃), S).

Equivalence of (3) to (2) follows from Prop. 1.viii. That (3) entails (4) follows
from Tab. 2.iv and Prop. 1.i. Step (5) is logically equivalent to (4). The remaining
equivalences follows from expanding/contracting the definition of circ-s.

ut

Proposition 3 (Projecting Circumscriptions). If F is well-founded with
respect to S, then

project(circ-s(F, S), S) ≡ project(F, S).

Proof. Left-to-right follows from Tab. 2.ii. Right-to-left from Tab. 2.vi.
ut

The proof of Theorem 2 is preceded by the following auxiliary propositions:
Prop. A2 is used to prove Prop. A3, which is referenced in the proof of Theo-
rem 2.ii. Prop. A4 is referenced in the proof of Theorem 2.iii.

Proofs 21

Proposition A2. If F |= G then

project(F, S) ∧ ¬raise(G,S) |= project(F, S ∪ S̃).

Proof.

(1) F |= G.
(2) I |= project(F, S) ∧ ¬raise(G,S).
(3) raise(F, S) |= raise(G,S).
(4) I |= (project(F, S ∪ S̃) ∨ raise(F, S)) ∧ ¬raise(G,S).
(5) I |= project(F, S ∪ S̃).

Assume (1) and let I be an interpretation such that (2) holds. Step (3) follows
from (1) and Prop. 1.i. Step (4) follows from (2) and Prop. 1.viii. Step (5) follows
from (4) and (3).

ut

Proposition A3. If F |= G then

project(F, S) ∧ circ-s(G,S) |= project(F, S ∪ S̃).

Proof. Follows from Prop. A2, since by the definition of circ-s it holds that
circ-s(G,S) |= ¬raise(G,S).

ut
Proposition A4.

project(F, S ∪ S̃) ∧ ¬raise(G,S) |= project(F ∧ ¬raise(G,S), (S ∩ S̃)).

Proof.

(1) 〈I, β〉 |= project(F, S ∪ S̃).
(2) 〈I, β〉 |= ¬raise(G,S).
(3) 〈J, β〉 |= F .
(4) J ∩ (S ∪ S̃) ⊆ I.
(5) J ∩ S = I ∩ S.
(6) For all K such that 〈K,β〉 |= G and K ∩ S ⊆ I ∩ S it holds that

K ∩ S = I ∩ S.
(7) For all K such that 〈K,β〉 |= G and K ∩ S ⊆ J ∩ S it holds that

K ∩ S = J ∩ S.
(8) 〈J, β〉 |= ¬raise(G,S).
(9) 〈I, β〉 |= project(F ∧ ¬raise(G,S), (S ∩ S̃)).

Let 〈I, β〉 be an interpretation such that (1) and (2) holds. By expanding the
definition of project, from (1) follows that there exists a structure J such that
(3) and (4) hold. Step (5) follows from (4) and Prop. A1. By expanding the
definition of raise, step (6) follows from (2). Step (7) – which is identical to (6),
except that I ∩ S is replaced by J ∩ S – from (6) and (5). Step (8) follows from
(7) and contracting the definition of raise. Step (9), finally, from (8), (4) and (3)
and contracting the definition of project.

ut

22 Appendix A

Theorem 2 (Consequences of Circumscription). If F is well-founded with
respect to S, then

circ-s(F, S) |= G

is equivalent to at least one of the following entailments, depending on additional
preconditions on G:

(i) F |= G, if G ≡ project(G,S);

(ii) F |= project(F ∧G,S), if G ≡ project(G,S ∪ S̃);

(iii) F |= project(F ∧ ¬project(F ∧ ¬G,S), S).

Proof.
(2.i)

(1) circ-s(F, S) |= G iff
(2) project(circ-s(F, S), S) |= G iff
(3) project(F, S) |= G iff
(4) F |= G.

Let F,G and S be as specified in the preconditions of the theorem. Then equiva-
lence of (2) to (1) and of (4) to (3) follows from the preconditionG ≡ project(G,S)
and Tab. 2.vi. Equivalence of (3) to (2) follows from Prop. 3 and the precondition
that F is well-founded with respect to S.

(2.ii) Let F,G and S be as specified in the preconditions of the theorem.
Left-to-right:

(1) circ-s(F, S) |= G.
(2) circ-s(F, S) |= F ∧G.
(3) circ-s(F, S) |= project(F ∧G,S).
(4) F |= project(F ∧G,S).

Assume (1). Step (2) follows from (1), since circ-s(F) |= F . Step (3) follows
from (2) and Tab. 2.i. Step (4) follows from (3) and Theorem 2.i, whose pre-
conditions are met: That F is well-founded with respect to S is also here a
precondition, and project(F ∧G,S) ≡ project(project(F ∧G,S), S) follows from
Tab. 2.v.

Right-to-left:

(5) F |= project(F ∧G,S).
(6) circ-s(F, S) |= project(F ∧G,S).
(7) circ-s(F, S) |= project(F ∧G,S ∪ S̃)).
(8) circ-s(F, S) |= project(G,S ∪ S̃).
(9) circ-s(F, S) |= G.

Assume (5). Step (6) follows from (5), since circ-s(F, S) |= F . Step (7) follows
from (5) and Prop. A3. Step (8) follows from (7) and Tab. 2.xx. Step (9) follows
from (8) and the precondition G ≡ project(G,S ∪ S̃).

Reduct-Based Notions of Answer Sets 23

(2.iii) Let F,G, S as specified in the preconditions of the theorem. We for-
mally prove the following equivalence:

circ-s(F, S) |= G if and only if circ-s(F, S) |= ¬project(F ∧ ¬G,S). (xv)

The theorem straightforwardly follows from equivalence (xv) and Theorem 2.ii,
whose preconditions are satisfied: That F is well-founded with respect to S
is also here a precondition. The second precondition ¬project(F ∧ ¬G,S) ≡
project(¬project(F∧¬G,S), S∪S̃) is an instance of the following general property
which can be proven from the definition of project: For all formulas F it holds
that

project(¬project(F, S), S ∪ S̃) ≡ ¬project(F, S). (xvi)

The left-to-right direction of equivalence (xv) can be shown as follows:

(1) circ-s(F, S) |= ¬project(F ∧ ¬G,S).
(2) circ-s(F, S) |= ¬(F ∧ ¬G).
(3) circ-s(F, S) |= G.

Assume (1). Step (2) follows from (1) and Tab. 2.i. Step (3) follows from (2)
since circ-s(F, S) |= F .

The right-to-left direction of equivalence (xv) can be shown as follows:

(1) circ-s(F, S) |= G.
(2) project(circ-s(F, S) ∧ ¬G,S ∪ S̃) |= ⊥.
(3) project(F ∧ ¬G ∧ ¬raise(F, S), S ∪ S̃) |= ⊥.
(4) project(F ∧ ¬G,S ∪ S̃) ∧ ¬raise(F, S) |= ⊥.
(5) project(F ∧ ¬G,S) ∧ ¬raise(F ∧ ¬G,S) ∧ ¬raise(F, S) |= ⊥.
(6) project(F ∧ ¬G,S) ∧ ¬raise(F, S) |= ⊥.
(7) ¬raise(F, S) |= ¬project(F ∧ ¬G,S).
(8) circ-s(F, S) |= ¬project(F ∧ ¬G,S).

Assume (1). Step (2) follows from (1) and Tab. 2.x. Step (3) follows from (2)
by expanding the definition of circ-s. Step (4) follows from (3) and Prop. A4.
Step (5) follows from (4) and Prop. 1.viii. Step (6) follows from (5) and Prop. 1.i.
Step (7) is equivalent to (6). Finally, step (8) follows from (7) and the definition
of circ-s.

ut

B Reduct-Based Notions of Answer Sets

Answer sets according to the stable model semantics are traditionally described
as fixed points, in terms of a reduct operation that maps a formula and an
interpretation to a simpler formula. In this section, we give such a definition and
show in Theorem B1 its equivalence to answer sets according to Def. 9. We then
reconstruct in terms of this notion of reduct a specific variant of reduct from [3]

24 Appendix B

which is used in [4, 5] to justify the “circumscription-like” characterization of
stable models that we have compared in Sect. 7 to Def. 9. This appendix is then
concluded by Theorem B2, which shows correctness of this reconstruction and
thus gives insights into the relationships between the discussed characterizations
of answer sets.

Notation in this Appendix. In this Appendix B we use notation and symbols
as specified in Sects. 2 and 7, but with two constraining assumptions: (1.) Un-
less specially noted otherwise, the only predicate symbols in formulas and in-
terpretations are ◦ and •. (2.) We assume that formulas are ground. Since the
variable assignment β of an interpretation 〈I, β〉 is then irrelevant, we write the
interpretation just as structure I. The material in this section should transfer
straightforwardly to formulas with variables (and similarly, infinite conjunctions
represented by clause sets), but we have not worked this out.

With Def. B2, we give a reduct-based characterization of answer sets according
to the stable model semantics. This definition is preceded by Def. B1, which
specifies the symbolic notation F |M for restriction, as we call the straightforward
replacement of literals in a formula F by truth value constants according to a
consistent set of literals M . The definition of reduct (Def. B2.i) is then specified
in terms of restriction. Theorem B1 then formally states the equivalence of the
reduct-based definition of answer sets (Def. B2) with the circumscription-based
(Def. 9).

Definition B1 (Restriction F |L, F |M). The restriction of a formula F by
a consistent set of literals M , in symbols F |M , is F with all literals that are
members of M replaced by >, and all literals whose complement is a member
of M replaced by ⊥.

The following properties of restriction will be used later on in proofs.

Proposition B5 (Properties of Restriction F |L, F |M).
(i) I |= F |M if and only if I[M] |= F .

(ii) ¬(F |M) = (¬F)|M .
(iii) F |I∩S is satisfiable if and only if I |= project(F, S̃).

Proof. (B5.i) and (B5.ii) are easy to see. (B5.iii) can be shown as follows:

(1) There exists a J such that J |= F |I∩S iff
(2) There exists a J such that J [I ∩ S] |= F iff
(3) There exists a J such that J |= F and I ∩ S ⊆ J iff
(4) There exists a J such that J |= F and J ∩ S̃ ⊆ I iff
(5) I |= project(F, S̃).

Equivalence of (2) to (1) follows from Prop. B5.i. Equivalence of (4) to (3) from
Prop. A1. Equivalence of (5) to (4) follows from contracting the definition of
project.

ut

Reduct-Based Notions of Answer Sets 25

Definition B2 (Answer Set in Terms of Reduct). For all consistent sets
of ground literals M ⊆ (NEG ∩ ◦̂) define:

(i) reduct(F,M, I) def= F |I∩(M∪•̂).

(ii) I |= ansred(F,M) iffdef I |= circ-s(reduct(F,M, I),POS ∪ •̂) ∧ SYNC.

The M parameter in Def. B2.i and B2.ii is not commonly found in characteriza-
tions of answer sets. Its value can be any set of negative literals with predicate ◦,
for instance ∅ or (NEG ∩ ◦̂). It is used to model different notions of reduct from
the literature. Actually, as Theorem B1 shows, the value of M is irrelevant for
the correspondence between different characterizations of answer sets.

Proposition B6 (Properties of Reduct). For all M ⊆ (NEG ∩ ◦) it holds
that

(i) I |= reduct(F,M, J) if and only if I[J ∩ (M ∪ •̂)] |= F .
(ii) I |= reduct(F,M, I) if and only if I |= F .
(iii) ¬reduct(F,M, I) = reduct(¬F,M, I).

Proof. (B6.i) follows from Prop. B5.i; (B6.ii) from Prop. B6.i; (B6.iii) from
Prop. B5.ii. ut
Theorem B1 (Equivalence of Ansred and Ans). For all M ⊆ (NEG ∩ ◦̂) it
holds that ansred(F,M) ≡ ans(F).

Proof.

(1) I |= ansred(F,M) iff
(2) I |= circ-s(reduct(F,M, I),POS ∪ •̂) ∧ SYNC iff
(3) I |= reduct(F,M, I) ∧ ¬raise(reduct(F,M, I),POS ∪ •̂) ∧ SYNC iff
(4) I |= F ∧ ¬raise(reduct(F,M, I),POS ∪ •̂) ∧ SYNC iff
(5) I |= F ∧ ¬raise(F,POS ∪ •̂) ∧ SYNC iff
(6) I |= circ-s(F,POS ∪ •̂) ∧ SYNC iff
(7) I |= ans(F)

Let I be an interpretation such that (1) holds. Equivalence of (4) to (3) follows
from Prop. B6.ii. The remaining equivalences are straightforward to see, with
exception of equivalence of (5) to (4), which we show now:

(8) raise(reduct(F,M, I),POS ∪ •̂) iff
(9) There exists a J such that

J |= reduct(F,M, I) and J ∩ (POS ∪ •̂) ⊂ I ∩ (POS ∪ •̂) iff
(10) There exists a J such that

J [I ∩ (M ∪ •̂)] |= F and J ∩ (POS ∪ •̂) ⊂ I ∩ (POS ∪ •̂) iff
(11) There exists a J such that

J |= F and J ∩ (POS ∪ •̂) ⊂ I ∩ (POS ∪ •̂) iff
(12) raise(F,POS ∪ •̂)

Equivalence of (10) to (9) follows from Prop. B6.i. Equivalence of (11) to (10)
can be shown as follows: By (10) it holds that J ∩ (POS ∪ •̂) ⊆ I, which by
Prop. A1 is equivalent to I ∩ (NEG∪ •̂) ⊆ J . Since M ⊆ NEG it then holds that
I ∩ (M ∪ •̂) ⊆ J . Thus J [I ∩ (M ∪ •̂)] = J . ut

26 Appendix B

We now show the relationship of reduct as specified in Def. B2.i to the notion of
reduct in [3], which is used in [4, 5] to justify the “circumscription-like” charac-
terization of stable models that we have discussed in Sect. 7.

The formulas considered in [3] are based on classical propositional logic with
a restricted syntax: Constructed from atoms, the truth value constant ⊥, binary
connectives ∧,∨, and implication→. That is, negative literals, explicit negation,
and the truth value constant > are omitted. Implication (F → G) has a special
ambiguous meaning: On the one hand, it is semantically understood like classic
implication, that is, as equivalent to (¬F ∨ G). On the other hand it is used
for two special purposes: As rule forming operator and to express negation as
failure.

The correspondence of reduct to the notion of reduct of [3] is formally stated
with Theorem B2 below. This correspondence is shown with two limitations:
First, only logic programs as specified in Def. 8.iii, which are clausal, are consid-
ered as formulas. This class of includes disjunctive heads and negation as failure
in heads. The work in [3–5] applies also to nonclausal formulas. The second lim-
itation is that only reductions with respect to interpretations that are models of
the original program are taken into account. This should not have any practical
impact, since an interpretation that fails to model the original program cannot
be an answer set anyways.

We now start working towards Theorem B2. The function fp, defined in the
following, specifies a mapping from logic programs to formulas as considered
in [3]. Given SYNC and considering implications (F → G) as classically equiv-
alent to (¬F ∨ G), this function preserves equivalence, which is then stated as
Prop. B7. The function fe, on which fp is based, is not total, but defined as far
as required to prove Theorem B2 and for the discussion in Sect. 7. In values
of fp all atoms have ◦ as predicate symbol, none has •. A formula that literally
matches the syntax of [3] would be obtained from a value of fp by replacing all
the atoms ◦(A) with A, but for showing Theorem B2 this “unwrapping” is not
required.

Definition B3 (Translation of Logic Programs to Ferraris’ Syntax).

(i) The function fe maps a formula (constructed from literals with ◦ or •
as predicate symbol, >, ⊥, ∧, and ∨) to a formula corresponding to the syntax
considered in [3] (constructed from positive literals with ◦ as predicate symbol,
⊥, ∨, ∧, and →):

fe(+◦A) def= +◦A, where A is a term,
fe(−•A) def= +◦A→ ⊥, where A is a term,

fe(>) def= ⊥ → ⊥,
fe(⊥) def= ⊥,

fe(F ∧G) def= fe(F) ∧ fe(G),
fe(F ∨G) def= fe(F) ∨ fe(G).

Reduct-Based Notions of Answer Sets 27

(ii) The function fc maps a rule clause to a formula corresponding to the
syntax considered in [3] (as described in Def. B3.i):

fc((
∨n

i=1 L) ∨H) def= fe(
∧n

i=1 L̃)→ fe(H),

where ((
∨n

i=1 L)∨H) is a rule clause with negated body (
∨n

i=1 L) and head H for
some n ≥ 0. (As special case, if n = 0, the negated body is ⊥ and

∧n
i=1 L̃ = >.

Similarly if the head H contains no literals it is ⊥.)

(iii) The function fp maps a logic program to a set of formulas which corre-
spond to the syntax considered in [3] (as described in Def. B3.i):

fp(
∧n

i=1 Fi) def= {fc(Fi)|i ∈ {1, . . . , n}}, where n ≥ 0.

Proposition B7. If F is a formula such that fe(F) is defined, then (fe(F) ∧
SYNC) ≡ (F ∧SYNC). If F is a rule clause, then (fc(F)∧SYNC) ≡ (F ∧SYNC).
If F is logic program, then (

∧
C∈fp(F)C ∧ SYNC) ≡ (F ∧ SYNC).

Proof. Easy to see from Def. B3.
ut

The following Def. B4 directly reproduces the notion of reduct of [3]. Def. B4.i
specifies an auxiliary mapping from sets of atoms which represent interpretations
in [3] to interpretations as we represent them, which additionally takes into
account that in values of fp each atom is “wrapped” with the ◦ predicate.

Definition B4 (Ferraris’ Reduct).

(i) If X is a set of ground atoms, then
interp(X) def= {+◦A|◦A ∈ X} ∪ {+•A|◦A ∈ X} ∪ {−◦A|◦A ∈ ALL−X} ∪

{−•A|◦A ∈ ALL−X}.

(ii) The reduct FX of a formula F relative to a set of ground atoms X is the
formula obtained from F by replacing every outermost subformula G such that
interp(X) 6|= G with ⊥.

(iii) The reduct ΦX of a set of formulas Φ relative to a set of ground atoms
X is {FX |F ∈ Φ}.

The reduct FX depends on syntactic properties of F . That is, for classically
equivalent F and G, the reducts FX and GX are not necessarily classically equiv-
alent. Theorem B2, which we are approaching, states that FX can be expressed
in terms of our generic reduct (Def. B2.i) by instantiating N with (NEG ∩ ◦̂).
Definition B5 gives this instantiation a name:

Definition B5 (Reductfer).

reductfer(F, I) def= reduct(F,NEG ∩ ◦̂, I).

28 Appendix B

The statement of Theorem B2 is now preceded by a lemma to prove it, Prop. B9,
which in turn is proven making use of the following lemma:

Proposition B8 (Satisfiability of Reductfer). If L(F) ⊆ (POS ∪ •̂), then

reductfer(F, I) is satisfiable if and only if I |= F.

Proof. From Prop. B5.iii follows that reductfer(F, I) is satisfiable if and only if
I |= project(F,POS∪ •̂). If L(F) ⊆ (POS∪ •̂), then from properties of projection
(Tab. 2.viii and 2.xv) it follows that project(F,POS ∪ •̂) ≡ F .

ut

Proposition B9. If L(F) ⊆ (POS ∪ •̂), fe(F) is defined, and X is a set of
atoms such that interp(X) |= SYNC, then

fe(F)X ≡ reductfer(F, interp(X)).

Proof. The proof is by induction on formulas. Let I be the interpretation interp(X).
If I 6|= F , by Prop. B7 it holds that I 6|= fe(F). Thus fe(F)X = ⊥ and from
Prop. B8 follows reductfer(F, I) ≡ ⊥. Hence fe(F)X = ⊥ ≡ reductfer(F, I). If
I |= F , cases corresponding to the definition clauses of fe have to be distin-
guished. To verify the base cases, it is helpful to recall that the definition of
reductfer(F, I) expands as follows:

reductfer(F, I) = reduct(F,NEG ∩ ◦̂, I) = F |I∩((NEG∩◦̂)∪•̂). (xvii)

We have to consider the following cases:

– If F = +◦A, F = >, or F = ⊥, then fe(F)X ≡ FX = F = reductfer(F, I).

– If F = −•A, then fe(F)X = (+◦A→ ⊥)X = (⊥ → ⊥) ≡ > = reductfer(F, I).

– If F = (F1 ⊗ F2), where ⊗ is ∧ or ∨, then fe(F)X = (fe(F1)X ⊗ fe(F1)X)
and reductfer(F, I) = (reductfer(F1, I)⊗ reductfer(F2, I)). From the induction
assumptions fe(F1)X ≡ reductfer(F1, I) and fe(F2)X ≡ reductfer(F2, I) then
follows fe(F)X ≡ reductfer(F, I).

ut

Theorem B2 (Ferraris’ Reduct in Terms of the Generic Reduct). If X
is a set of atoms such that interp(X) |= (F ∧ SYNC), then∧

C∈fp(F)X

C ≡ reduct(F,NEG ∩ ◦̂, interp(X)).

Proof. Let F and X be as specified in the precondition of the theorem. Let I
be the interpretation interp(X). Recall that the right side of the theorem can
be expressed more compact as reductfer(F, I). From the definitions of FX , fp
and reduct it can be verified that for all rule clauses C it holds that fc(C)X is a
set member in fp(F)X if and only if reductfer(C, I) is a conjunct in reductfer(F, I).

Reduct-Based Notions of Answer Sets 29

The theorem thus follows if for all clauses C in F it holds that

fc(C)X ≡ reductfer(C, I). (xviii)

We now show equivalence (xviii). Let C = ((
∨n

i=1 L) ∨ H) be a clause in F ,
with negated body (

∨n
i=1 L) and head H for some n ≥ 0 in F . (As a special

case, negated body and head can be empty, as described in Def. B3.ii). From
the precondition I |= F follows I |= C. With the precondition I |= SYNC
and Prop. B7 then follows I |= fc(C). Thus fc(C)X = (fc(

∨n
i=1 L) ∨ H)X =

(fe(
∧n

i=1 L̃)→ fe(H))X = (fe(
∧n

i=1 L̃)X → fe(H)X) ≡ (¬fe(
∧n

i=1 L̃)X ∨ fe(H)X).
So equivalence (xviii) is implied by the following equivalence:

¬fe(
n∧

i=1

L̃)X ∨ fe(H)X ≡ reductfer(
n∨

i=1

L ∨H, I), (xix)

and, since reductfer distributes over disjunction, also by the conjunction of the
following two equivalences:

¬fe(
n∧

i=1

L̃)X ≡ reductfer(
n∨

i=1

L, I) (xx)

fe(H)X ≡ reductfer(H, I). (xxi)

Equivalence (xx) holds if and only if fe(
∧n

i=1 L̃)X ≡ ¬reductfer(
∨n

i=1 L, I), and
thus, by Prop. B6.iii if and only if fe(

∧n
i=1 L̃)X ≡ reductfer(

∧n
i=1 L̃, I), which

follows from Prop. B9. Equivalence (xxi) follows directly from Prop. B9.
ut

