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1. Background: Second-Order Quantifier Elimination

Input: a formula with second-order quantifiers

∃p∀x (¬qx ∨ px) ∧ (¬px ∨ rx)

Output: an equivalent first-order formula without new symbols

∀x ¬qx ∨ rx

• Variants: uniform interpolation, forgetting, projection

• Applications are:

• ontology reuse and analysis, information hiding [13, 21, 20]
• circumscription [10, 29]
• abduction in logic programming [30]
• and many more [11]

2. The Quest for Completeness of Elimination Methods

• Which classes of formulas ensure that there is an elimination result?

• Which methods guarantee success on particular such classes?

3. Elimination Methods: Basic Approaches

• Direct approach, Ackermann approach, DLS [27, 10, 6, 25, 2, 1]

Rewrite ∃p F until all subformulas ∃p F ′ match a form for which the
elimination result is known (“Ackermann’s Lemma”)

• Resolvent generation, SCAN [12, 1]

Convert ∃p F to CNF and replace all clauses with p by their resolvents
upon p

4. Some Known Completeness Properties for Elimination

• Elimination on propositional formulas succeeds

∃p F [p] ≡ F [>] ∨ F [⊥] (1)

• A variant of the direct approach succeeds on relational monadic
formulas (the Löwenheim class) [19, 26, 2]

Successive elimination of all predicates then provides a decision
procedure

• Sahlqvist formulas are modal formulas with first-order correspondence
properties that can be computed with the Sahlqvist-van Benthem
method [24, 3, 4]

Completeness for Sahlqvist formulas has been shown for SCAN
[14] and DLS [5]

• The success of DLS has been characterized syntactically [5]

• There are specialized methods for modal and description logics,
e.g., [16, 17, 28, 18, 20, 6, 25, 31]

5. Ackermann’s Lemma [1]

• Notation: If F [p] is a first-order formula (possibly with occurrences
of p) and G [x ] is a first-order formula (possibly with free occurrences
of x) without occurrences of p and of variables bound in F [p], then
F [G ] denotes F [p] with all occurrences p(ti) of p replaced by
G [ti ], that is, by G [x ] with all free occurrences of x replaced by ti
• Ackermann’s Lemma: If p is not in A[x ] and only positive in B [p],

then
∃p (∀x ¬px ∨ A[x ]) ∧ B [p] ≡ B [A] (2)

Analogously, if p is not in A[x ] and only negative in B [p], then

∃p (∀x px ∨ A[x ]) ∧ B [p] ≡ B [¬A] (3)

• Example:

∃p (∀x ¬px ∨ qx) ∧ ((∃y py ∧ ry) ∨ pa) ≡ (∃y qy ∧ ry) ∨ qa

6. Outline of DLS [27, 10, 15, 5]

1. Preprocessing: Convert ∃p F to an equivalent formula of the form

∃x1 . . . ∃xk∃p (A1 ∧ B1) ∨ . . . ∨ (An ∧ Bn), (4)

where p is only negative in the Ai and only positive in the Bi

1.1 Convert to negation normal form

1.2 Move quantifiers inward/outward:
Qx F [x ]⊗ G ≡ (Qx F [x ])⊗ G , if x not in G

1.3 Distribute ∧ over ∨:
F ∧ (G ∨ H) V (F ∧ G ) ∨ (F ∧ H),
if p occurs positively as well as negatively in G ∧H

This step might fail

Convert (4) to

∃x1 . . . ∃xk(∃p A1 ∧ B1) ∨ . . . ∨ (∃p An ∧ Bn), (5)

and process each ∃p Ai ∧ Bi individually

2. Preparation for Ackermann’s Lemma: Convert

∃p A ∧ B , (6)

where p is only negative in A and only positive in B to

∃f1 . . . ∃fm ∃p (∀x px ∨ A′[x ]) ∧ B ′[p], (7)

where the fi are fresh Skolem functions, p is not in A′ and is only
positive in B ′[p]

This is always possible, also with the roles of A and B switched

3. Application of Ackermann’s Lemma: Ackermann’s Lemma
applied to the subformula of (7) starting at ∃p yields

∃f1 . . . ∃fm B ′[A′] (8)

Un-Skolemize, which might fail

4. Simplification

7. Examples where DLS Fails Unnecessarily

• A monadic formula that requires distribution of ∨ over ∧ [2, 31]:

∃p ∀x (px ∧ qx) ∨ (¬px ∧ rx)
≡ ∃p ∀x (px ∨ rx) ∧ (qx ∨ ¬px) Distribute ∨ over ∧
≡ ∃p (∀x px ∨ rx) ∧ (∀x qx ∨ ¬px) Move ∀ inward

(9)

• “Reasoning” is required to obtain the “p-separated” form (6):

∃p (∀x∀y ¬px ∨ ¬qxy ∨ (py ∧ ry)) ∧ ∀x ¬rx
≡ ∃p (∀x∀y ¬px ∨ ¬qxy ∨ (py ∧ ⊥)) ∧ ∀x ¬rx
≡ ∃p (∀x∀y ¬px ∨ ¬qxy) ∧ ∀x ¬rx
≡ ∃p> ∧ ((∀x∀y ¬px ∨ ¬qxy) ∧ ∀x ¬rx)

(10)

8. Determining Separability and Separation Formulas

Theorem 1. Let F be a first-order formula and p a predicate. Then:
(i) A first-order formula can be constructed that is valid if and

only if there are first-order formulas A and B (without symbols
not in F ) where p is only negative in A and only positive in B
such that F ≡ A ∧ B

(ii) In case formulas A,B according to (i) exist, the pairs of
formulas A,B meeting the conditions of (i) can be
characterized exactly as the Craig/Lyndon interpolants of
first-order formulas constructed in a specific way

• The theorem says that:

• p-separability can be reduced to first-order validity
• In case of p-separability, p-separations A ∧ B can be

computed by Craig/Lyndon interpolation [7, 8, 9, 22]
• Moreover, all p-separations (modulo equivalence) are such

Craig/Lyndon interpolants

• The theorem can be generalized, e.g. that A may only contain
predicates from a given set. If these are all monadic, this ensures
success of subsequent steps of the elimination [31]

Is an analog theorem for form (4) instead of (6) possible?

9. Proof Sketch of Theorem 1

• We use notation for quantification upon “a predicate in a polarity”
(“literal forgetting”). For fresh q:

∃+p F [p] stands for ∃q F [q] ∧ (∀x ¬qx → ¬px)
∃−p F [p] stands for ∃q F [q] ∧ (∀x qx → px)

(11)

• The semantic conditions on A,B can be expressed as:

A ∧ B |= F , F |= A ∧ B , A ≡ ∃+p A, B ≡ ∃−p B (12)

• Note: Formulas that are equivalent to A,B and also do not
syntactically contain p negatively and positively, resp., can be obtained
from A,B by Craig/Lyndon interpolation, see [23, Introduction]

• From (12) follows ∃+p F |= A and ∃−p F |= B and thus

(∃+p F ) ∧ (∃−p F ) |= F (13)

Let F [p] = F . Then (13) holds iff, for fresh q, r :

F [q] ∧ (∀x ¬qx → ¬px) ∧ F [r ] ∧ (∀x rx → px) |= F [p] (14)

Given (14), we construct A as Craig/Lyndon interpolant:

F [q] ∧ (∀x ¬qx → ¬px) |= A |= (F [r ] ∧ (∀x rx → px))→ F [p] (15)

and then B as Craig/Lyndon interpolant:

F [r ] ∧ (∀x rx → px) |= B |= A→ F [p] (16)

• It can further be shown that if (14) holds, then all A,B satisfying
(15) and (16) also satisfy (12)

• A related generalization of Craig interpolation is [8, Lemma 2]

10. Eliminability by Uniform Replacement

Definition 1. A predicate p is eliminable by uniform replace-
ment from a first-order formula F [p] (briefly F [p] is EBUR) if and
only if there is a first-order formula G without occurrences of p and
of variables bound in F [p] such that

∃p F [p] ≡ F [G ]

• EBUR formulas have some “good” properties:

P1. Determining whether for given F [p] and G it holds that
∃F [p] ≡ F [G ] can be reduced to first-order validity

P2. The F [p] that are EBUR are recursively enumerable
P3. For a given EBUR F [p], the G such that ∃p F [p] ≡ F [G ]

are recursively enumerable
P4. For a given EBUR F [p], a first-order formula F ′ whose

symbols are all from F [p] (and which does not contain p)
such that ∃F [p] ≡ F ′ can be computed

• EBUR formulas cover some well-known cases of successful elimination:

• If ∃p F [p] matches the left side of Ackermann’s Lemma, then
F [p] is EBUR
• Propositional F [p] are EBUR
• If there is a G such that F [p] |= ∀x px ↔ G , then F [p] is EBUR

11. Proof Sketches of the Properties of EBUR formulas

• P1: Recall that p does not occur in F [G ]

∃p F [p] |= F [G ] holds if and only if F [p] |= F [G ] (17)

F [G ] |= ∃p F [p] holds in general (18)

• P2 and P3 follow from P1

• P4: F ′ can be obtained by Craig interpolation

F [p] |= F ′ |= F [G ] (19)

12. Uniform Replacement: Justification of Covered Cases

• Ackermann’s Lemma:

∃p F [p] ≡ ∃p (∀x ¬p(x) ∨ A) ∧ B [p] ≡ B [A]
≡ (∀x ¬A ∨ A) ∧ B [A] ≡ F [A]

(20)

• Propositional formulas: F [p] can be brought into the form

(¬p ∨ A) ∧ (p ∨ B) ∧ C , (21)

with p not in A,B ,C , which matches Ackermann’s Lemma

• Entailed definition: ∃p F [p] ≡ ∃p F [p] ∧ (∀x px ↔ G ) ≡ F [G ]

Alternatively, a match with Ackermann’s Lemma can be established:

F [p] ≡ F [G ] ∧ (∀x px → G ) ∧ (∀x px ← G ) (22)

• In the following example F [p] is EBUR but does not match
Ackermann’s Lemma; after rewriting, a subformula matches it:

∃p F [p] ≡ ∃p∃y (∀x qxy → px) ∧ (∀x px → rxy)
≡ ∃y∃p (∀x qxy → px) ∧ (∀x px → rxy)

(23)

13. Uniform Replacement: Questions and Observations

• Is there a general method to compute solutions G that is
better than naive generating and validity testing?

• Is consideration of G that only use symbols from F [ ] sufficient?

• If F [p] is EBUR, how far are equivalent formulas also EBUR?

• Ways to characterize ∃p F [p] ≡ F [G ]:

• With the second-order analog to p(t) ≡ ∀x p(x) ∨ x 6= t:

∃p F [p] |= ∀p F [p] ∨ ¬(∀x px ↔ G ) (24)

• G is a “counter-definiens” of p (q is fresh):

F [q] ∧ ¬F [p] |= ¬(∀x px ↔ G ) (25)

• G is a “counter-definiens” of p – expressed differently:

F [q] ∧ ¬F [p] |= (∃x ¬px ↔ G ) (26)

If ∃ would be replaced there by ∀, we could obtain G as
definiens of ¬p by Craig interpolation
• Entailment of a disjunction of related definitions for some
k ≥ 0 and ground terms a1, . . . , ak (by Herbrand’s Theorem):

F [q] ∧ ¬F [p] |= (¬pa1 ↔ G [a1]) ∨ . . . ∨ (¬pak ↔ G [ak ]) (27)

14. A Tentative Generalization of Uniform Replacement

Definition 2. A predicate p is eliminable by multiform replace-
ment from a first-order formula F [p] if and only if there are a num-
ber n ≥ 0, a first-order formula F ′[p, ..., p] and first-order formulas
G1, ...,Gn without occurrences of p and of variables bound in F ′ such
that F [p] ≡ F ′[p, ..., p] and

∃p F ′[p, ..., p] ≡ ∃p1...∃pn F ′[p1, ..., pn] ≡ F ′[G1, ...,Gn]

(The arity of [p, ..., p] is n, each position representing a partition of
the occurrences of p. The pi are fresh)

• Example:

∃p ((∀x px∨qx)∧(∀x ¬px∨rx)) ∨ ((∀x px∨sx)∧(∀x ¬px∨tx))
≡ ∃p1∃p2 ((∀x p1x∨qx)∧(∀x ¬p1x∨rx)) ∨

((∀x p2x∨sx)∧(∀x ¬p2x∨tx))
≡ ((∀x qx∨qx)∧(∀x ¬qx∨rx)) ∨ ((∀x sx∨sx)∧(∀x ¬sx∨tx))

(28)

• ∃p1 . . . ∃pn F ′[p1, . . . , pn] ≡ F ′[G1, ...,Gn] can be reduced analogously
to first-order validity, analogously to P1 for EBUR

• ∃p F ′[p, ..., p] |= ∃p1...∃pn F ′[p1, ..., pn] holds in general

How can ∃p1...∃pn F ′[p1, ..., pn] |= ∃p F ′[p, ..., p] be established?

15. Conclusion

• Preliminary results:

• Identification of “separability” and “eliminability by uniform
replacement” as properties which provide criteria to measure the
“elimination power” of elimination methods
• Suggestion to improve the “elimination power” of DLS-like methods

by embedding interpolation-based separation

• Identification of several open issues related to the discussed concepts
• Future issue: taking logics with fixpoint operator into account
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