Some Fragments Towards Establishing
Completeness Properties of Second-Order Quantifier Elimination Methods
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7. Examples where DLS Fails Unnecessarily

12. Uniform Replacement: Justification of Covered Cases

Input: a formula with second-order quantifiers
ApVx (—gx V px) A (—px V rx)
Output: an equivalent first-order formula without new symbols

Vx —gx V rx

e Variants: uniform interpolation, forgetting, projection
e Applications are:
o ontology reuse and analysis, information hiding [13, 21, 20]
e circumscription [10, 29]
e abduction in logic programming [30]
e and many more [11]

2. The Quest for Completeness of Elimination Methods

e Which classes of formulas ensure that there is an elimination result?
e Which methods guarantee success on particular such classes?

3. Elimination Methods: Basic Approaches

o Direct approach, Ackermann approach, DLS [27, 10, 6, 25, 2, 1]

Rewrite 3p F until all subformulas 3p F’ match a form for which the
elimination result is known ( “Ackermann’s Lemma”)

» Resolvent generation, SCAN [12, 1]
Convert dp F to CNF and replace all clauses with p by their resolvents
upon p

4. Some Known Completeness Properties for Elimination

e Elimination on propositional formulas succeeds
dpFlp] = F[T]V F[L] (1)
e A variant of the direct approach succeeds on relational monadic

formulas (the Lowenheim class) [19, 26, 2]

Successive elimination of all predicates then provides a decision
procedure

e Sahlgvist formulas are modal formulas with first-order correspondence

properties that can be computed with the Sahlqvist-van Benthem
method [24, 3, 4]

Completeness for Sahlqvist formulas has been shown for SCAN
[14] and DLS [5]
e The success of DLS has been characterized syntactically [5]

o There are specialized methods for modal and description logics,
e.g., [16, 17, 28, 18, 20, 6, 25, 31]

5. Ackermann’s Lemma [1]

* Notation: If F|p| is a first-order formula (possibly with occurrences
of p) and G|[x] is a first-order formula (possibly with free occurrences
of x) without occurrences of p and of variables bound in F[p], then
F[G] denotes F[p] with all occurrences p(t;) of p replaced by
G|[t;], that is, by G|[x]| with all free occurrences of x replaced by t;

o Ackermann’s Lemma: If p is not in A[x] and only positive in B|p],

hen
t 3p (vx—~px v Alx) A Blp] = BIA ©

Analogously, if p is not in A[x]| and only negative in B|p], then
3 (vx px v Alx]) A Blg] = B[-A 3
o Example:

Ip (Vx =px V gx) A((Bypy Ary)Vpa) = (3yqy Ary)V qa

6. Outline of DLS [27, 10, 15, 5]

1. Preprocessing: Convert dp F to an equivalent formula of the form
Ixq ... 3x Ip (AL A By) V...V (Ap A Bp), (4)
where p is only negative in the A; and only positive in the B;

1.1 Convert to negation normal form
1.2 Move quantifiers inward /outward:
Qx F[x] ® G = (Qx F[x]) ® G, if x not in G
1.3 Distribute A over V:
FA(GVH)=(FAG)V(FAH),
if p occurs positively as well as negatively in G A H
This step might fail

Convert (4) to

and process each dp A; A B; individually
2. Preparation for Ackermann’s Lemma: Convert

dp AN B, (6)
where p is only negative in A and only positive in B to
3f; ... Im3p (Vx px V A'[x]) A B'[p], (7)

where the f; are fresh Skolem functions, p is not in A’ and is only
positive in B'[p]
This is always possible, also with the roles of A and B switched

3. Application of Ackermann’s Lemma: Ackermann’s Lemma
applied to the subformula of (7) starting at dp yields

3f, ... 3fm B'[A] (8)

Un-Skolemize, which might fail
4. Simplification

* A monadic formula that requires distribution of \VV over A [2, 31]:
ApVx (px A gx) V (—px A rx)
= dpVx (px V rx) A (gx V —px)

= dp (Vx px V rx) A (Vx gx V —px)

Distribute V over A (9)
Move V inward

» “Reasoning” is required to obtain the “p-separated” form (6):

dp (VxVy —px V —gxy V (py A ry)) A Vx —rx
dp (VxVy —px V —gxy V (py A L)) A Vx —rx
dp (VxVy —px V —gxy) A Vx —rx

dp T A ((VxVy —px V —=gxy) A Vx—rx)

(10)

8. Determining Separability and Separation Formulas

Theorem 1. Let F be a first-order formula and p a predicate. Then:
(i) A first-order formula can be constructed that is valid if and
only if there are first-order formulas A and B (without symbols
not in F) where p is only negative in A and only positive in B

suchthat F = AA B

(ii) In case formulas A, B according to (i) exist, the pairs of
formulas A, B meeting the conditions of (i) can be
characterized exactly as the Craig/Lyndon interpolants of
first-order formulas constructed in a specific way

® The theorem says that:
e p-separability can be reduced to first-order validity
e In case of p-separability, p-separations A A B can be
computed by Craig/Lyndon interpolation [7, 8, 9, 22]
e Moreover, all p-separations (modulo equivalence) are such
Craig/Lyndon interpolants

® The theorem can be generalized, e.g. that A may only contain
predicates from a given set. If these are all monadic, this ensures
success of subsequent steps of the elimination [31]

Is an analog theorem for form (4) instead of (6) possible?

9. Proof Sketch of Theorem 1

o We use notation for quantification upon “a predicate in a polarity”
(“literal forgetting™). For fresh g:

J+p F[p] stands for
J—p F[p] stands for

g Fq] A (Vx —gx — —px)
dq Flg] A (Vx gx — px) (1)

e The semantic conditions on A, B can be expressed as:
ANBEF, FEAAB, A=34pA, B=3-pB (12)

® Note: Formulas that are equivalent to A, B and also do not
syntactically contain p negatively and positively, resp., can be obtained
from A, B by Craig/Lyndon interpolation, see [23, Introduction]

* From (12) follows 3+p F = A and 3—p F = B and thus
(F+pF)AN(F—pF) E F (13)
Let F[p] = F. Then (13) holds iff, for fresh g, r:
Flq] N (Vx —gx — —px) A F[r] A (Vx rx — px) = F[p] (14)
Given (14), we construct A as Craig/Lyndon interpolant:
Flal A (¥x—gx — ~px) = A = (FIF] A (x = px) — FIo] (15)
and then B as Craig/Lyndon interpolant:
Flr] A (Vxrx — px) = B E A— Flp] (16)

o It can further be shown that if (14) holds, then all A, B satisfying
(15) and (16) also satisfy (12)

o A related generalization of Craig interpolation is [8, Lemma 2]

10. Eliminability by Uniform Replacement

Definition 1. A predicate p is eliminable by uniform replace-
ment from a first-order formula F[p] (briefly F[p] is EBUR) if and

only if there is a first-order formula G without occurrences of p and
of variables bound in F[p] such that

dp Fp] = F[G]

o EBUR formulas have some “good” properties:

P1. Determining whether for given F[p] and G it holds that
1F|p] = F|G]| can be reduced to first-order validity

P2. The F[p] that are EBUR are recursively enumerable

P3. For a given EBUR F|p|, the G such that dp F[p] = F[G]
are recursively enumerable

P4. For a given EBUR F|[p|, a first-order formula F’ whose
symbols are all from F|[p] (and which does not contain p)
such that 3F[p] = F/ can be computed

o EBUR formulas cover some well-known cases of successful elimination:
o If dp F[p] matches the left side of Ackermann’s Lemma, then
F|p] is EBUR
o Propositional F|[p] are EBUR
o If there is a G such that F[p| = Vx px <> G, then F[p] is EBUR

11. Proof Sketches of the Properties of EBUR formulas

o P1: Recall that p does not occur in F[G]
dp F[p] & F[G] holds if and only if F[p] = F[G] (17)
F[G] = 3p F[p] holds in general (18)

o P2 and P3 follow from P1
» P4: F' can be obtained by Craig interpolation

Flpl = F' = FIG] (19)

e Ackermann’'s Lemma:

Ip Flp] = 3p(Vx—p(x) V A) A Blp] = B[A] (20)

= (Vx-AVA) AB[A = F[A]

o Propositional formulas: F[p] can be brought into the form
(mpVA)A(pV B)AC, (21)

with p not in A, B, C, which matches Ackermann’s Lemma
o Entailed definition: dp F[p] = dp Flp] A (Vxpx <> G) = F[G]
Alternatively, a match with Ackermann’'s Lemma can be established:

Flp] = F[G] A (Vxpx — G) A (Vx px < G) (22)

® In the following example F|p] is EBUR but does not match
Ackermann’s Lemma; after rewriting, a subformula matches it:

dp Flp] = dpdy (Vx gxy — px) A (Vx px — rxy)

= dydp (Vx gxy — px) A (Vx px — rxy) (23)

13. Uniform Replacement: Questions and Observations

o Is there a general method to compute solutions G that is
better than naive generating and validity testing?

o Is consideration of G that only use symbols from F[ | sufficient?
o If F[p] is EBUR, how far are equivalent formulas also EBUR?

o Ways to characterize dp F[p] = F[G]:
o With the second-order analog to p(t) = Vx p(x) V x # t:

3p Flp] = Vp Flp] V —=(Vx px <> G) (24)
o G is a “counter-definiens” of p (g is fresh):
Flal A=Flpl F —~(Vx px < G) (25)
e G is a “counter-definiens” of p — expressed differently:
Flal A =Flp] = (Gx =px < G) (26)

If 4 would be replaced there by V, we could obtain G as
definiens of —p by Craig interpolation

e Entailment of a disjunction of related definitions for some
k > 0 and ground terms ay, ..., a, (by Herbrand’s Theorem):

Flal A =Flpl = (mpay < Glai]) V... V (=pag < Glay])  (27)

14. A Tentative Generalization of Uniform Replacement

Definition 2. A predicate p is eliminable by multiform replace-
ment from a first-order formula F[p] if and only if there are a num-
ber n > 0, a first-order formula F'[p, ..., p] and first-order formulas

Gy, ..., G, without occurrences of p and of variables bound in F’ such
that F[p] = F'[p, ..., p] and

Elp F/[pvap] = E|p].E|pI'l F/[P]_,...,pn] = F/[G17°°°7 Gn]

(The arity of [p, ..., p] is n, each position representing a partition of
the occurrences of p. The p; are fresh)

e Example:

Ap ((Vx pxVgx)A(Vx =pxVrx)) V ((Vx pxVsx)A(Vx —pxVix))
= dp1dpo ((Vx p1xVgx)A(Vx —pixVrx)) V
((Vx poxVsx)A(Vx —poxVix))
= ((Vx gxVgx)A(Vx —gxVrx)) V ((Vx sxVsx)A(Vx —sxVix))

(28)

e 3p1...3pn F'[p1,...,pn] = F'[Gy, ..., Gp] can be reduced analogously
to first-order validity, analogously to P1 for EBUR

e IpF'lp,...,p] = 3p1...3pn F'[p1, ..., pn] holds in general
How can 3p1...3pn F/[p1, ..., pn] E 3p F/[p, ..., p] be established?

15. Conclusion

e Preliminary results:

o ldentification of “separability” and “eliminability by uniform
replacement” as properties which provide criteria to measure the
“elimination power” of elimination methods

e Suggestion to improve the “elimination power” of DLS-like methods
by embedding interpolation-based separation

o ldentification of several open issues related to the discussed concepts
o Future issue: taking logics with fixpoint operator into account
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