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Lemmas in Mathematics

May help to find a proof more easily
Can be applied several times, but need to be proven only once
Can help to structure a proof for human comprehension
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Lemmas in ATP

In general factorize duplication, e.g., of subproofs within a proof or among different proofs
Play a different role, depending on the prover family
• Provers that internally maintain lemmas: A resolvent is a lemma that can be re-used• Provers without internal lemmas: Connection Method / Clausal tableaux (“CM-CT”) provers performtop-down proof search from the goal where subgoals are proven repeatedly
Can be applied as external input lemmas in different ways
• Adding the lemmas to the original axioms

• shortens proofs• widens search possibilites
• Replacing parts of the search by lemma access

• alters, restricts the overall search
Ideally, for a given problem we would like to identify just a few relevant lemmas
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Learning Useful Lemmas

Learning the utility of lemmas
Does a lemma move the goal closer to the axioms?
[Kaliszyk, Urban 2015]: identify globally useful lemmas in millions of HOL Light proofs
Here: evaluating lemmas in the context of an axiom set and a goal
Like premise selection, but no given premise set: generate, select, apply lemmas
MaLARea [Urban et al. 2008]: iterative improvement
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Condensed Detachment (CD)

By Carew A. Meredith (1904–1976) – mid 1950s
A D-term (full binary tree) proves for given axioms its
most general theorem (MGT), determined by unification
A possible inference system for CD

1 ∶ P(t)fresh-copy for axiom P(t)

d1 ∶ P(i(x, y)) d2 ∶ P(x′)
D(d1, d2) ∶ P(y)mgu(x, x′)

CD problems as first-order ATP problems
Detachment axiom P(i(x, y)) ∧ P(x) → P(y)Proper axioms positive units, e.g. P(i(x, i(y, x)))Goal negative ground unit, e.g. ¬P(i(a, a))
Horn, first-order, binary function symbol, cyclic predicatedependency
Relation to CM and more: [CW, Bibel CADE 21; 2023] 8



Size Measures for D-Terms (Full Binary Trees)

Tree size: 8
Height: 4
Compacted size: 5 – size of minimal DAG; number of distinct compound subterms
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Term representation

D(D(1,D(1, 1)),D(1,D(D(1, 1)),D(D(1, 1), 1)))

Representation by factor equations

2 = D(1, 1)
3 = D(1, 2)
4 = D(3,D(3,D(2, 1)))



D-Terms and Lemmas

Proven unit lemma = D-term (tree) with its MGT

A subterm of a D-term also represents such a lemma
The DAG view expresses lemma re-use
Features of both D-term and MGT are available forlearning and selecting
Lemma generation: enumerating D-terms with MGT
Enumerating D-terms is also an ATP approach,generalizing the enumeration of proof structuresunderlying CM-CT provers
Enumeration can be performed upon increasinglevels, e.g. tree size or height of the D-terms
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SGCD – Structure-Generating Theorem Proving for CD

Assume a Prolog predicate that, depending on the parameter instantiation, serves different purposes
enum_dterm_mgt_pairs(+Level, +Dterm, +Formula) verifying a proof
enum_dterm_mgt_pairs(+Level, +Dterm, −Formula) computing the MGT
enum_dterm_mgt_pairs(+Level, −Dterm, +Formula) proving a formula (goal-driven)
enum_dterm_mgt_pairs(+Level, −Dterm, −Formula) generating lemmas (axiom-driven)

SGCD embeds it in nested loops of goal-
and axiom-driven phases
A cache collects the results of theaxiom-driven phases
Subproblems for lower levelsare solved from the cache
The cache can be heuristically restricted
on the basis of MGTs
Optional: replacing lemma application –initializing the cache with given lemmas
Optional: “hybrid levels”: different levelcharacterizations for goal- and axiom-driven

11

Cache ∶= ∅;
for l ∶= 0 tomaxLevel do

form ∶= l to l + preAddMaxLevel do
enum_dterm_mgt_pairs(m,d, goal);
throw proof_found(d)

N ∶= {⟨l, d, f ⟩ ∣ enum_dterm_mgt_pairs(l, d, f)};
ifN = ∅ then throw exhausted;
Cache ∶= merge_news_into_cache(N,Cache)
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Problem Corpus

312 CD problems
The 196 “pure” CD problems in the TPTP(all CD problems in the TPTP except 10 with: status satisfiable; detachment with disj. and neg.; goal theoremnot an atom)
Single-axiom versions of 116 multi-axiom problems in these 196, obtained with the “Tarski/Rezuş technique”[Rezuş 2010]
No split into training and test problems

13



Method Overview
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Problem
(a → g)

LemmaGenerator
Large set
of lemmas
{d′ ∶ (a → g

′)}
UtilityModel

Ranked set of
lemmas
{d′ ∶ (a → g

′)}
EvaluatedProver Proof

d

Training data
{di ∶ (ai → gi)}

Problem1

(a1 → g1)
BaseProver

Proof1
di

Problemn

(an → gn)
BaseProver

Proofn
dn

⋮



Lemma Generation
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⋮

SGCD in axiom-driven mode
Some configured level characterization
Returns also lemmas that wereabandoned by SGCD



The Utility Model
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LemmaGenerator
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⋮

Uses machine learning
60 manual or automated (GraphNeural Network – GNN) inputfeatures
Features consider D-term and MGT ofthe lemma, axioms, goal
Training utility of a lemma based onproving-time reduction
Generated lemmas ranked accordingto utility score u ∈ [0, 1]



Lemma Application
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(a → g)

LemmaGenerator
Large set
of lemmas
{d′ ∶ (a → g

′)}
UtilityModel

Ranked set of
lemmas
{d′ ∶ (a → g

′)}
EvaluatedProver Proof

d

Training data
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(a1 → g1)
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Proof1
di
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(an → gn)
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⋮

Select the top k lemmas
Optionally: enrich them by closureunder sub-proofs
Add the lemmas as axioms, or, if theprover supports it, in a replacing mode



Considered Provers

SGCD Prover9 CMProver leanCoP CCS-Vanilla Vampire E

Internal lemmas ✓ ✓ ✓ ✓External lemmas that replace search ✓ ✓Outputs D-terms: allows use for training ✓ ✓ ✓ ✓
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Experiment 1: Iterative Improvement of the Base Prover
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SGCD
SGCDProver9CMProverCCS-Vanilla

Base prover = evaluated proverIt learns from its own proof attempts,in two iterationsThe top-200 lemmas are used



Experiment 1: Iterative Improvement of the Base Prover – Results for Time limit 50 s

All problems 312
SGCD Base 266
SGCD Iter 1 280
SGCD Iter 2 281
SGCD Total 282
Prover9 Base 240
Prover9 Iter 1 250
Prover9 Iter 2 247
Prover9 Total 258
CMProver Base 82
CMProver Iter 1 83
CMProver Iter 2 79
CMProver Total 91
CCS-Vanilla Base 81
CCS-Vanilla Iter 1 96
CCS-Vanilla Iter 2 96
CCS-Vanilla Total 106
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Experiment 1: Iterative Improvement of the Base Prover – Results for Time limit 30 min

All problems 312
SGCD Base 285
SGCD Iter 1 281
SGCD Iter 2 283
SGCD Total 286
Prover9 Base 262
Prover9 Iter 1 257
Prover9 Iter 2 265
Prover9 Total 267
CMProver Base 103
CMProver Iter 1 121
CMProver Iter 2 126
CMProver Total 141
CCS-Vanilla Base 105
CCS-Vanilla Iter 1 130
CCS-Vanilla Iter 2 128
CCS-Vanilla Total 145
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Experiment 2: Learned Lemmas to Enhance Other Provers
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SGCD VampireEProver9leanCoP

SGCD

Base prover = SGCDNot iterated as the evaluated provermay not return D-termsThe top-200 lemmas are usedTime limit 30 min



Experiment 2: Learned Lemmas to Enhance Other Provers

All problems 312
Vampire Base 263
Vampire Lemmas 283 !!!
Vampire Total 284
E Base 281
E Lemmas 275
E Total 286
Prover9 Base 260
Prover9 Lemmas 269
Prover9 Total 269
leanCoP Base 77
leanCoP Lemmas 113
leanCoP Total 113
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Experiment 3: Changing the Number of Added Lemmas
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SGCD SGCDVampire

SGCD

The top-k lemmas are used, for differentvalues of kTime limit 100 s



Experiment: Changing the Number of Added Lemmas

Prover #Lemmas #Solved problems
All problems 312
Vampire Base 227
Vampire 10 226
Vampire 25 242
Vampire 50 246
Vampire 100 258
Vampire 200 257
Vampire 500 258
SGCD Base 275
SGCD 10 278
SGCD 25 285
SGCD 50 284
SGCD 100 281
SGCD 200 283
SGCD 500 284
25 lemmas already yield substantial improvement
Even 500 lemmas have no negative impact
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Proving LCL073-1

Proven in ATP only by Wos in 2000 with several invocations of OTTER

Proven now with SGCD and replacing lemmas
• 98,198 lemmas generated by SGCD for PSP-level,cache limit 5,000, termination by exhaustion (60 s)• Ordered heuristically according to 5 general features (190 s)• The best 2,900 are supplied as replacing input lemmas to SGCD• SGCD called for proving: axiom-driven by PSP-level,goal-driven by height, cache limit 1,500,general heuristic restrictions (20 s)• The structure of the proof reflects PSP-level plus one height step

Here Wos Meredith
Compacted size 46 74 40Tree size 3,276 9,207 6,172Height 40 48 30Double negation yes no yesMax size of MGT of subproof 19 18 18
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The “Proof-Subproof” (PSP) Level Characterization – AWay of Inferencing Enabled by Proof Structure Terms

A principle observed in proofs by Łukasiewicz and Meredith [CW,Bibel CADE 2021, 2023]
turned into a level characterization for SGCD

D-terms in PSP-level n+ 1 are those D-terms where
• one argument term is in PSP-level n• and the other argument is a subterm of that term

Enumeration by PSP-level
• is incomplete (some D-terms are omitted)• has features of DAG enumeration: D-terms in PSP-level n have compacted size n
Applications of enumeration by PSP-level
• Solves ”Łukasiewicz’s single axiom” LCL038-1 with a short proof• Often applicable, often leads to proofs with small compacted size

Corpus TPTPCD 196SGCD (4 cfgs) 176SGCD PSP-level (5 cfgs) 153
• Very useful for generating lemmas input to other provers• Key technique to solve ”Meredith’s single axiom” LCL073-1

28
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Outlook, Follow-Up Steps

Learning from failure [MR,CW,ZZ AITP 2023]
• The residual of a failed proof attempt e.g. in SGCD consists of lemmas for the given axioms but other goalsand can be used as training data• With the enhanced training data GNNs becomes superior to the linear models with handcrafted features
Lemmas representing proof compressions stronger than DAGs
• Nonunit lemmas corresponding to Horn clauses obtained with binary resolution upon the ternary

Detachment clause• This may be handled via the connection structure calculus [Eder 1989]or via combinators in the D-terms [CW PAAR 2022]• It is not clear how important the stronger compressions are in practice
Beyond CD problems
• First-order Horn appears in close reach [CW PAAR 2022]• Witness Theory [Rezuş 2020] seems to consider theoretical generalizations of CD• Maybe also [Megill 1995]• Maybe the proof structures of the CM suffice• The axiom-driven mode of SGCD may be compatible with well-known techniques for equality handling
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TPTP’s CD Top

Problem Rtg C/T/H Time Prover

LCL426-1 1.00LCL425-1 1.00LCL421-1 1.00LCL420-1 1.00LCL419-1 1.00LCL418-1 1.00LCL073-1 1.00 46/3276/40 16.55 SGCD-HEU-3*LCL063-1 1.00 943.481 ELCL876+1 0.93 70/396/22 227.17 Prover9-HEU-1*LCL422-1 0.86LCL417-1 0.86 647.386 Vampire-HEU-2*LCL109-1 0.86 72/348/22 226.55 Prover9-HEU-1*LCL428-1 0.57 0.227 ELCL395-1 0.57 45/112/20 140.94 SGCDLCL377-1 0.57 38/78/15 62.71 SGCDLCL074-1 0.57 n 50/136/18 998.93 SGCDLCL037-1 0.57 n 72/45359/39 172.29 Prover9LCL875-1 0.43 0.298 VampireLCL394-1 0.43 41/81/17 267.22 SGCDLCL376-1 0.43 30/76/15 58.17 SGCD-GNN*LCL375-1 0.43 43/103/20 56.44 SGCD-LIN*LCL374-1 0.43 33/77/17 42.47 SGCD

Problem Rtg C/T/H Time Prover

LCL167-1 0.43 48/265/22 27.53 SGCD-GNN*LCL125-1 0.43 33/460/16 33.14 Prover9LCL124-1 0.43 27/130/10 76.25 SGCD-LIN*LCL062-1 0.43 44/115/21 285.10 SGCD-LIN*LCL061-1 0.43 39/92/16 87.96 SGCDLCL028-1 0.43 34/67/15 295.28 SGCDLCL020-1 0.43 106/24989/37 21.65 Prover9-LIN*LCL393-1 0.29 37/87/17 46.13 SGCDLCL392-1 0.29 30/52/14 26.83 SGCDLCL391-1 0.29 40/161/20 65.93 SGCDLCL383-1 0.29 33/52/15 41.99 SGCDLCL372-1 0.29 27/46/13 12.87 SGCDLCL368-1 0.29 21/32/16 2.10 SGCDLCL365-1 0.29 10/15/9 429.17 CCS-VanillaLCL119-1 0.29 83/28624/27 76.07 Prover9LCL105-1 0.29 37/109/11 90.54 Prover9-LIN*LCL099-1 0.29 20/41/6 459.30 SGCDLCL032-1 0.29 n 67/15362/35 106.73 Prover9LCL403-1 0.14 40/94/16 30.54 SGCD-LIN*LCL390-1 0.14 31/45/14 281.13 SGCDLCL384-1 0.14 13/23/5 683.01 CMProverLCL382-1 0.14 29/53/18 6.21 SGCD
31



Summary of Contributions

Incorporation of proof structure terms into ATP with Machine Learning
• Consideration of features of proof structures• ATP/ML dataflow centered around the proof structure terms
Insights into the use of learned lemmas for provers of different paradigms and for different ways to
incorporate lemmas
• SGCD is competitive with leading first-order provers• Learned lemmas improve Vampire substantially• The CM-CT provers without internal lemma maintenance are drastically improved, but still weak• Vampire and SGCD are able to handle a few hundreds of supplied lemmas• Linear and GNN models perform so far similarly
An ATP proof of LCL073-1, a problem that was really hard for ATP
• It is now solved by SGCD in a novel way that makes essential use of proof structure terms
PS: everything is implemented and freely available
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