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The Solution Problem: Example

Given F[p1...py,], find G1...G, sith. = F[G;...G,]

Flpip2] = Vz (a(z) = b(z)) —
(Y (p1(z) = p2(z)) A
vV (a(x) = p2(x)) AV (p2(z) — b(x))).
p1(z){p1 = Az1.a(x1)}
= Va (a(z) — b(z)) — = Qeva(a))z J
(Va (a(z) — b(2)) A = al2)
Va (a(z) = b(z)) AV (b(z) — b(x)))
Some solutions Some non-solutions
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The Solution Problem: Historic Context and Related Works

Given Fpy...py], find Gy ...G, sith. E F[G; ... G,)]

In the Algebra of Logic a core reasoning mode, together with elimination

Boole, Peirce, Schroder (,, Auflésungsproblem”), Léwenheim

Boolean algebra: [Rudeanu, 1974] Boolean Functions and Equations

Boolean unification on term level added to Prolog
[Martin and Nipkow, 1986, Biittner and Simonis, 1987], Complexity:
[Kanellakis et al., 1990, Baader, 1998], Implementation: [Carlsson, 1991]

Towards predicate logic:

relational monadic formulas [Behmann, 1950] ([Léwenheim, 1908]7?)
quantifier-free formulas [Eberhard et al., 2017] Boolean unif. with predic.

Here: formalization with predicate logic, targeted at automated reasoning

transfer of classical material

second-order quantification is essential: V, 3 instead of II, |
abstractions from classical special techniques

relations to Craig interpolation, definability (“query reformulation”)
and second-order quantifier elimination (“forgetting”)



The Solution Problem: Applications
Given Fpy...py], find Gy ...G, sith. E F[G; ... G,)]

Collections of examples: [Schroder, 1890, Rudeanu, 1974]

Vast number of applications in graph theory, automata theory, circuit
design, query optimization, marketing problems, medical diagnosis,
biochemistry, ... [Rudeanu, 2001, Brown, 2003]

® Proof compression [Eberhard et al., 2017]

e Detecting similar concepts [Baader and Narendran, 2001]



The Solution Problem: Formal Characterization

Given Fpy...py], find Gy ...G, sith. E F[G; ... G,)]

Definition.

* A solution problem (SP) is a pair F[p] of a formula F' and a sequence p
of distinct predicates, called unknowns.

A unary SP is a SP with a single unknown.

A (particular) solution of a SP is a sequence G of formulas s.th.
substitutible( G, p, F') and = F[G).

Particular in contrast to general solutions

substitutible captures i.a.:

= no free variables in G get bound if inserted for p into F[p]
= no member of p occurs free in a member of G

Dual characterization based on unsatisfiability is possible



The Solution Problem for First-Order Logic is Recursively Enumerable

Given Fpy...py], find Gy ...G, sith. E F[G; ... G,)]

e Assuming a countable vocabulary, the set of solutions of a first-order SP
is recursively enumerable

Enumerated

sequences of formulas Validity test
Gll Gnl |: F[GllGnl]?
G12 . G7L2 ': F[G12 . Gng]?

G13...Gng ':F[Glg...Gng]?



Different Views on the Solution Problem

Given Fpy...py], find Gy ...G, sith. E F[G; ... G,)]

Boolean Unification Definientia and Interpolants

Construction of Witnesses
for Second-Order Quantifier Elimination



The Solution Problem as Boolean Unification
Given Fpy...py], find Gy ...G, sith. E F[G; ... G,)]
e FE-unification in the theory of Boolean algebra (or logical equivalence)
= A solution represents a unifier o = {p; — G1,...,pp, — Gp}:

E F[Gy...Gy)
ifft  Flp1...pnJo=g To

< A unifier represents a solution:

Llplo =g R[plo
iff & L[G]< R[G]

= can be generalized to a finite sets of equations

= ¢ must be ground because members of p are not allowed in G



The Solution Problem as Construction of SOQE-Witnesses

Given Fpy...py], find Gy ...G, sith. E F[G; ... G,)]

e Second-order quantifier elimination (SOQE):
Given dp F'[p], find a first-order equivalent
Definition. An SOQE-witness of p in 3p F[p] is a sequence G of formulas
such that substitutible(...) and
dp F[p] = F|G].

e Computation of SOQE-witnesses is restricted SOQE, where resultants
must have the form F[G]

= G is is a solution of F[p] iff
1. G is an SOQE-witness of p in 3p F[p], and
2. E3IpFp].

< G is an SOQE-witness of p in Ip F|p] iff
G is a solution of (—F[p’]| V F[p])[p] (P’ fresh)



The Solution Problem, Definientia and Interpolants

Given F[p1...py], find Gy ...G, s.th. = F[G,

e Assume substitutible(...)

iff
iff
iff

G is a solution of F[p]

= FlG]
peoG o Flpl
“Fpl F o e6)

.Gy

iff
iff
iff
iff
iff
iff

“Flpl  F pe-G
G is a negated definiens of p within —=F[p]
Ip (~FpA-p) EGE =3 (FpAp)
-F[l] EGE FI[T]
SFpln-p EGE ~(=FpTAD)

G is a Craig interpolant

if p is nullary
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Reduction from n-ary to Unary Solution Problems

e Equivalence of the solutions of an n-ary SP and the solutions of
n unary SPs on existential second-order formulas:

Theorem. For a SP F[p; ...p,] that has a solution the following statements
are equivalent:

(a) G1...G, is a solution of the SP.
(b) Forie {1,...,n}: G, is a solution of the unary SP
(Fig1--- I F[G1 ... Gi—1piDit1 - - - Pn]) (P4
s.th. no member of p; ...p, occurs free in G;.



Solving on the Basis of Second-Order Formulas

(b) Fori e {1,...,n}: G; is a solution of the unary SP
(3pit1---Ipn FIG1 ... Gi_1pipit1 - - - Pu])[pi]

Algorithm SOLVE-ON-SECOND-ORDER(SOLVE-UNARY ).
For i := 1 to n do: Assign to G; an output of SOLVE-UNARY applied to the
unary SP as specified in the reduction theorem.

e This algorithm inherits properties from its SOLVE-UNARY parameter:
= nondeterministic or deterministic
= in the nondet. case: each solution is reached by an execution path
= in the det. case: the output is a most general (i.e. reproductive) solution



Abstraction from the Method of Successive Eliminations

(b) Fori e {1,...,n}: G; is a solution of the unary SP
(3pit1---Ipn FIG1 ... Gi_1pipit1 - - - Pu])[pi]

e The method of successive eliminations, aka Boole’s method, in the
variant of [Biittner and Simonis, 1987]:

1. For ¢ := n to 1: Create auxiliary formulas F; by SOQE s.th.
Filp1,...pi] = 3pig1...3pn Flp1, ... piPis1, - - - Pnl
2. For i :=1 to n do: Assign to G; a solution of (F;[Gy ...G;—1p;])[pi]

e The reduction theorem abstracts from this:

= second-order quantification (in place of original algebraic operators)
= not just for propositional logic, xor is not necessary

alternate ways to handle intermediate second-order formulas
alternate methods to solve the unary SPs

deterministic / nondeterministic variants

for particular / most general solutions



Solving by Inside-Out SOQE-Witness Construction

Algorithm SOLVE-BY-WITNESSES.
Repeatedly eliminate from 3p; ... 3p, F[p; ...py] the innermost quantifier Ip;
by replacing p; with an SOQE-witness.

Ip13p2 Flpipo]
Ipy Fp1G4[p1]] because dps Fpip2] = Flp1Gh[p1]]
F[G1G5[GH]]

e |SSUE: Are all solutions reachable in a nondeterministic variant?
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Solution Existence Theorem

Theorem. The following statements are equivalent:

(a) There exists a solution of the SP F[p; ...p,].
(b) E3p1...3pn Flp1...pnl

e Holds for n-ary SPs under the assumption that it holds for unary SPs
with the considered formulas and unknowns
= expressed in the paper via formula and predicate classes
= holds for example for propositional formulas: 3p F[p] = F[F[T]]



I17-Completeness of Solution Existence in the Propositional Case

Theorem. The following statements are equivalent:
(a) There exists a solution of the SP F[p; ...p,].

(b) ': &/} ---HpnF[pl---pn]'

e The following tasks are both I1'-complete:

= determining the existence of a solution of a propositional SP
= determining the validity of an existential QBF

e Shown for Boolean unification: [Kanellakis et al., 1990, Baader, 1998]



SOQE Resultant as Precondition for Solution Existence

e Relationship between SOQE and solution existence expanded on by
[Schroder, 1890]:

The resultant of eliminating the unknowns of a SP is the unique
weakest precondition under which the SP has a solution

® (We continue to assume solution existence of unary SPs)

Theorem. Let A be a formula s.th. no member of p occurs in A and
A =3p F[p]. Then
(i) (A — F[p])[p] has a solution.
(i) If B is a formula s.th. no member of p occurs in B, and (B — F[p])[p]
has a solution, then B = A.
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SOQE Resultant as Precondition for Solution Existence: Example

Flpips) = Vz (pi(z) = p2(z)) A
vV (a(z) = p2(x)) AV (p2(z) — b(x)).

Ip13Ips Flp1p2] = Va (a(z) — b(z)). by SOQE
% T.

—
T

(z) = p2(2)) AV (p2(2) = b(2)))-
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Further Steps

Reproductive solutions as most general solutions v
Solution constructions based on Craig interpolation v’

Solution constructions related to SOQE

= [Eberhard et al., 2017] generalized to relational monadic formulas v/
= relaxed notion of substitutible?
= adaption of SOQE methods (SCAN, Ackermann approach)?

Application relevant generalizations of the problem

= solutions in restricted vocabularies v/
= expressing synthesis of definitional equivalences v/
= weakest / strongest / simplest solution?

Consideration of particular formula classes

Understanding and systematizing methods and results from the literature

= Boole, Jevons, Pierce, Schréder, Lowenheim, Behmann, ...

Reviewing the many applications mentioned in the literature
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Summary

Given F[p1...py], find G1...G, sith. = F[G;...G,]

e Different views
= unification
= r.e. case of SOQE
= definitions that entail a formula

¢ Nice core theory, rooted in the Algebra of Logic

= reduction of m-ary to unary SPs

= solution existence as validity of an existential second-order formula
SOQE to express preconditions for solution existence
= reproductive solutions

e Adaption from historic and algebraic setting to predicate logic
= second-order quantification is essential
= abstractions, towards systematizing methods, beyond propositional logic
B new aspects, e.g.: deterministic / nondeterministic / most general

= placement in context of modern SOQE (forgetting), Craig
interpolation and definability (query reformulation)
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