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The Solution Problem: Example

Given F [p1 . . . pn], find G1 . . . Gn s.th. |= F [G1 . . . Gn]

F [p1p2] = ∀x (a(x)→ b(x)) →
(∀x (p1(x)→ p2(x)) ∧
∀x (a(x)→ p2(x)) ∧ ∀x (p2(x)→ b(x))).

|= ∀x (a(x)→ b(x)) →
(∀x (a(x)→ b(x)) ∧
∀x (a(x)→ b(x)) ∧ ∀x (b(x)→ b(x))).

Some solutions
G1 G2

λx1.a(x1) λx1.b(x1)
a(x1) a(x1)
⊥ a(x1)

a(x1) ∧ b(x1) a(x1) ∨ b(x1)

Some non-solutions
G1 G2

b(x1) a(x1)
a(x1) ⊥
⊥ >
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p1(x){p1 7→ λx1.a(x1)}
= (λx1.a(x1))x
= a(x)



The Solution Problem: Historic Context and Related Works

Given F [p1 . . . pn], find G1 . . . Gn s.th. |= F [G1 . . . Gn]

• In the Algebra of Logic a core reasoning mode, together with elimination
Boole, Peirce, Schröder („Auflösungsproblem”), Löwenheim

• Boolean algebra: [Rudeanu, 1974] Boolean Functions and Equations
• Boolean unification on term level added to Prolog

[Martin and Nipkow, 1986, Büttner and Simonis, 1987], Complexity:
[Kanellakis et al., 1990, Baader, 1998], Implementation: [Carlsson, 1991]

• Towards predicate logic:
relational monadic formulas [Behmann, 1950] ([Löwenheim, 1908]?)
quantifier-free formulas [Eberhard et al., 2017] Boolean unif. with predic.

• Here: formalization with predicate logic, targeted at automated reasoning
transfer of classical material
second-order quantification is essential: ∀,∃ instead of Π,

⋃
abstractions from classical special techniques
relations to Craig interpolation, definability (“query reformulation”)
and second-order quantifier elimination (“forgetting”)
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The Solution Problem: Applications

Given F [p1 . . . pn], find G1 . . . Gn s.th. |= F [G1 . . . Gn]

• Collections of examples: [Schröder, 1890, Rudeanu, 1974]

• Vast number of applications in graph theory, automata theory, circuit
design, query optimization, marketing problems, medical diagnosis,
biochemistry, ... [Rudeanu, 2001, Brown, 2003]

• Proof compression [Eberhard et al., 2017]

• Detecting similar concepts [Baader and Narendran, 2001]
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The Solution Problem: Formal Characterization

Given F [p1 . . . pn], find G1 . . . Gn s.th. |= F [G1 . . . Gn]

Definition.
• A solution problem (SP) is a pair F [p] of a formula F and a sequence p

of distinct predicates, called unknowns.

• A unary SP is a SP with a single unknown.

• A (particular) solution of a SP is a sequence G of formulas s.th.
substitutible(G,p, F ) and |= F [G].

• Particular in contrast to general solutions

• substitutible captures i.a.:
no free variables in G get bound if inserted for p into F [p]
no member of p occurs free in a member of G

• Dual characterization based on unsatisfiability is possible
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The Solution Problem for First-Order Logic is Recursively Enumerable

Given F [p1 . . . pn], find G1 . . . Gn s.th. |= F [G1 . . . Gn]

• Assuming a countable vocabulary, the set of solutions of a first-order SP
is recursively enumerable

Enumerated
sequences of formulas Validity test

G11 . . . Gn1 |= F [G11 . . . Gn1]?
G12 . . . Gn2 |= F [G12 . . . Gn2]?
G13 . . . Gn3 |= F [G12 . . . Gn3]?

...
...
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Different Views on the Solution Problem

Given F [p1 . . . pn], find G1 . . . Gn s.th. |= F [G1 . . . Gn]
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Boolean Unification

Construction of Witnesses
for Second-Order Quantifier Elimination

Definientia and Interpolants



The Solution Problem as Boolean Unification

Given F [p1 . . . pn], find G1 . . . Gn s.th. |= F [G1 . . . Gn]

• E-unification in the theory of Boolean algebra (or logical equivalence)

⇒ A solution represents a unifier σ = {p1 7→ G1, . . . , pn 7→ Gn}:

|= F [G1 . . . Gn]
iff F [p1 . . . pn]σ =E >σ

⇐ A unifier represents a solution:

L[p]σ =E R[p]σ
iff |= L[G]↔ R[G]

can be generalized to a finite sets of equations

σ must be ground because members of p are not allowed in G
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The Solution Problem as Construction of SOQE-Witnesses

Given F [p1 . . . pn], find G1 . . . Gn s.th. |= F [G1 . . . Gn]

• Second-order quantifier elimination (SOQE):
Given ∃p F [p], find a first-order equivalent

Definition. An SOQE-witness of p in ∃p F [p] is a sequence G of formulas
such that substitutible(...) and

∃p F [p] ≡ F [G].

• Computation of SOQE-witnesses is restricted SOQE, where resultants
must have the form F [G]

⇒ G is is a solution of F [p] iff
1. G is an SOQE-witness of p in ∃p F [p], and
2. |= ∃p F [p].

⇐ G is an SOQE-witness of p in ∃p F [p] iff
G is a solution of (¬F [p′] ∨ F [p])[p] (p′ fresh)
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The Solution Problem, Definientia and Interpolants

Given F [p1 . . . pn], find G1 . . . Gn s.th. |= F [G1 . . . Gn]

• Assume substitutible(...)

G is a solution of F [p]
iff |= F [G]
iff p↔ G |= F [p]
iff ¬F [p] |= ¬(p↔ G)

iff ¬F [p] |= p↔ ¬G if p is nullary
iff G is a negated definiens of p within ¬F [p]
iff ∃p (¬F [p] ∧ ¬p) |= G |= ¬∃p (¬F [p] ∧ p)
iff ¬F [⊥] |= G |= F [>]
iff ¬F [p] ∧ ¬p |= G |= ¬(¬F [p′] ∧ p′)
iff G is a Craig interpolant
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Reduction from n-ary to Unary Solution Problems

• Equivalence of the solutions of an n-ary SP and the solutions of
n unary SPs on existential second-order formulas:

Theorem. For a SP F [p1 . . . pn] that has a solution the following statements
are equivalent:
(a) G1 . . . Gn is a solution of the SP.
(b) For i ∈ {1, . . . , n}: Gi is a solution of the unary SP

(∃pi+1 . . . ∃pn F [G1 . . . Gi−1pipi+1 . . . pn])[pi]
s.th. no member of p1 . . . pn occurs free in Gi.
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Solving on the Basis of Second-Order Formulas

(b) For i ∈ {1, . . . , n}: Gi is a solution of the unary SP
(∃pi+1 . . . ∃pn F [G1 . . . Gi−1pipi+1 . . . pn])[pi]

Algorithm SOLVE-ON-SECOND-ORDER(SOLVE-UNARY ).
For i := 1 to n do: Assign to Gi an output of SOLVE-UNARY applied to the
unary SP as specified in the reduction theorem.

• This algorithm inherits properties from its SOLVE-UNARY parameter:
nondeterministic or deterministic
in the nondet. case: each solution is reached by an execution path
in the det. case: the output is a most general (i.e. reproductive) solution
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Abstraction from the Method of Successive Eliminations

(b) For i ∈ {1, . . . , n}: Gi is a solution of the unary SP
(∃pi+1 . . . ∃pn F [G1 . . . Gi−1pipi+1 . . . pn])[pi]

• The method of successive eliminations, aka Boole’s method, in the
variant of [Büttner and Simonis, 1987]:

1. For i := n to 1: Create auxiliary formulas Fi by SOQE s.th.
Fi[p1, . . . pi] ≡ ∃pi+1 . . . ∃pn F [p1, . . . pipi+1, . . . pn]

2. For i := 1 to n do: Assign to Gi a solution of (Fi[G1 . . . Gi−1pi])[pi]

• The reduction theorem abstracts from this:
second-order quantification (in place of original algebraic operators)
not just for propositional logic, xor is not necessary
alternate ways to handle intermediate second-order formulas
alternate methods to solve the unary SPs
deterministic / nondeterministic variants
for particular / most general solutions
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Solving by Inside-Out SOQE-Witness Construction

Algorithm SOLVE-BY-WITNESSES.
Repeatedly eliminate from ∃p1 . . . ∃pn F [p1 . . . pn] the innermost quantifier ∃pi

by replacing pi with an SOQE-witness.

∃p1∃p2 F [p1p2]
≡ ∃p1 F [p1G

′
2[p1]] because ∃p2 F [p1p2] ≡ F [p1G

′
2[p1]]

≡ F [G1G
′
2[G1]]

• ISSUE: Are all solutions reachable in a nondeterministic variant?
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Solution Existence Theorem

Theorem. The following statements are equivalent:
(a) There exists a solution of the SP F [p1 . . . pn].
(b) |= ∃p1 . . . ∃pn F [p1 . . . pn].

• Holds for n-ary SPs under the assumption that it holds for unary SPs
with the considered formulas and unknowns

expressed in the paper via formula and predicate classes
holds for example for propositional formulas: ∃pF [p] ≡ F [F [>]]
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ΠP
2 -Completeness of Solution Existence in the Propositional Case

Theorem. The following statements are equivalent:
(a) There exists a solution of the SP F [p1 . . . pn].
(b) |= ∃p1 . . . ∃pn F [p1 . . . pn].

• The following tasks are both ΠP
2 -complete:

determining the existence of a solution of a propositional SP
determining the validity of an existential QBF

• Shown for Boolean unification: [Kanellakis et al., 1990, Baader, 1998]
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SOQE Resultant as Precondition for Solution Existence

• Relationship between SOQE and solution existence expanded on by
[Schröder, 1890]:
The resultant of eliminating the unknowns of a SP is the unique
weakest precondition under which the SP has a solution

• (We continue to assume solution existence of unary SPs)

Theorem. Let A be a formula s.th. no member of p occurs in A and
A ≡ ∃p F [p]. Then

(i) (A→ F [p])[p] has a solution.
(ii) If B is a formula s.th. no member of p occurs in B, and (B → F [p])[p]

has a solution, then B |= A.
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SOQE Resultant as Precondition for Solution Existence: Example

F [p1p2] = ∀x (p1(x)→ p2(x)) ∧
∀x (a(x)→ p2(x)) ∧ ∀x (p2(x)→ b(x)).

∃p1∃p2 F [p1p2] ≡ ∀x (a(x)→ b(x)). by SOQE
6≡ >.

∀x (a(x)→ b(x))→ F [p1p2] = ∀x (a(x)→ b(x)) →
(∀x (p1(x)→ p2(x)) ∧
∀x (a(x)→ p2(x)) ∧ ∀x (p2(x)→ b(x))).
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Further Steps

• Reproductive solutions as most general solutions X

• Solution constructions based on Craig interpolation X

• Solution constructions related to SOQE
[Eberhard et al., 2017] generalized to relational monadic formulas X
relaxed notion of substitutible?
adaption of SOQE methods (SCAN, Ackermann approach)?

• Application relevant generalizations of the problem
solutions in restricted vocabularies X
expressing synthesis of definitional equivalences X
weakest / strongest / simplest solution?

• Consideration of particular formula classes

• Understanding and systematizing methods and results from the literature
Boole, Jevons, Pierce, Schröder, Löwenheim, Behmann, ...

• Reviewing the many applications mentioned in the literature
23



Summary

Given F [p1 . . . pn], find G1 . . . Gn s.th. |= F [G1 . . . Gn]

• Different views
unification
r.e. case of SOQE
definitions that entail a formula

• Nice core theory, rooted in the Algebra of Logic
reduction of n-ary to unary SPs
solution existence as validity of an existential second-order formula
SOQE to express preconditions for solution existence
reproductive solutions

• Adaption from historic and algebraic setting to predicate logic
second-order quantification is essential
abstractions, towards systematizing methods, beyond propositional logic
new aspects, e.g.: deterministic / nondeterministic / most general
placement in context of modern SOQE (forgetting), Craig
interpolation and definability (query reformulation)
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