
KBSET/Letters – User Guide

Christoph Wernhard

Draft – October 11, 2020

Copyright © 2019, 2020 Christoph Wernhard

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts.

1

Contents

1 Introduction 3

2 Prerequisites 4
2.1 Required Further Software . 4
2.2 Supported Platforms . 4

3 Notation and Shorthands Used in this Document 5

4 Installation 5

5 Typical Set-Up and Overview on Files and Directories 6

6 LATEX Set-Up in Main Files 6
6.1 Toggles . 6
6.2 Indexes . 8
6.3 Further Redefinable Commands . 8

7 Configuration 8
7.1 The KBSET/Letters Configuration File 8
7.2 File and Directory Specifiers . 9
7.3 Configuration Keys . 9

8 Shell Scripts 11
8.1 General Remarks . 11
8.2 Scripts . 12

9 Usage Scenarios 13
9.1 General Notes . 13
9.2 PDF Generation During Development . 14
9.3 PDF Generation . 14
9.4 HTML Generation . 14

10 Consistency Validation 14
10.1 General Remarks . 15
10.2 Basic Validation Beyond the LATEX Standard Workflow 15
10.3 Validation on the Basis of LATEX Log Files 15
10.4 Validation of the Bibliography . 16
10.5 Further Possibilities . 16

11 Using the System from Prolog 16
11.1 Overview on Relevant Modules . 16
11.2 Conversion to Further Formats . 17

2

1 Introduction

KBSET/Letters is an environment for developing scholarly editions of correspondences.
It is realized as a specific application pattern of the more general environment KBSET
(Knowledge-Based Support for Scholarly Editing and Text Processing). KBSET/Letters
is successfully applied in a comprehensive scholarly edition project on a correspondence
from the 18th century.1

At its current stage, the KBSET/Letters environment is fully adequate for scholarly
print editions of correspondences from the 18th and 19th century that are in German
language and where the edited texts are represented in a character-preserving (zeichenge-
treu) but not position-preserving (positionsgetreu) way.2 The implementation of HTML
presentations is still under development, but already sufficient to generate draft versions
of online editions with fairly high quality. The main characteristics and features of
KBSET/Letters are as follows:

• KBSET/Letters supports the complete workflow of creating a scholarly edition,
from creating transcriptions, annotations and data bases with meta information,
via intermediate representations for revision and consistency checking, to high-
quality PDF presentations for printing and online viewing as well as high quality
HTML presentations.

• The environment is entirely based on free software. Aside of the KBSET core
system, these are widespread platform-independent software packages: a TEX dis-
tribution and the SWI-Prolog programming system.

• All that is required to reproduce the generation of representative high-quality PDF
and HTML presentations from the source documents of an edition project can be
published as free documentation or free software, respectively, and thus be consid-
ered as a component of the edition. This ensures a high degree of sustainability
and facilitates the use of the source documents in further contexts by inspecting,
modifying or extending the involved free software.

• A parsimonious set of declarative markup elements (KBSET/Letters Markup (KLM))
has been specified that is adapted to the requirements of scholarly editions of corre-
spondences from the 18th and 19th century. Working with such specialized markup
elements is perceived by users as expressing statements of interest rather than a
technical burden.

• The markup is expressed in LATEX, as commands and environments. Text with
markup thus remains fairly readable and can be directly created by users with

1The correspondence of Johann Georg Sulzer (1720–1779) and Johann Jakob Bodmer (1698–1783),
transcribed and annotated by J. Kittelmann with assistance of B. Baumann, which is going be published
in 2020 in print as volume 10 of Sulzer’s Gesammelte Schriften, edited by H. Adler and E. Décultot.

2Since the represented text is encoded in UTF-8, the limitations with respect to language are easy
to overcome by revisiting the handling of text phrases used to generate presentations and replacing the
used BibLaTeX configuration.

3

any text editor that supports LATEX. Moreover, a way to process the specialized
markup has been implemented in LATEX to produce PDF presentations of fair qual-
ity. In addition, a second way of processing has been implemented, where the LATEX
sources are parsed and converted to a high-quality HTML presentation. The parser
can also be used for preprocessing the marked-up LATEX sources, for example to
re-arrange letters that are maintained in different source documents according to
their author into the temporal order of a correspondence, to obtain PDF documents
of high quality.

• The core system of KBSET/Letters is written in SWI-Prolog, which includes good
interfaces to XML and RDF and realizes the potential of Prolog as a unifying
language. As noted on the SWI-Prolog home page,3 it considers Prolog “primarily
as glue between various components. The main reason for this is that data is at
the core of many modern applications while there is a large variety in which data is
structured and stored. Classical query languages such as SQL, SPARQL, XPATH,
etc. can each deal with one such format only, while Prolog can provide a concise
and natural query language for each of these formats that can either be executed
directly or be compiled into dedicated query language expressions. Prolog’s relational
paradigm fits well with tabular data (RDBMS), while optimized support for recursive
code fits well with tree and graph shaped data (RDF).” As an AI programming
language, Prolog already includes human readable data serialization, which, for
other programming languages is typically supplied with XML. The use of Prolog
in KBSET provides a basis for reaching out into semantics-based techniques of
knowledge representation and knowledge processing.

2 Prerequisites

2.1 Required Further Software

The environment requires the TeX Live TEX distribution and SWI-Prolog , which are
both free software. A terminal program to invoke shell commands and Bash scripts as
well as a text editor with LATEX support (e.g., GNU Emacs) are presupposed.

The environment has been tested with TeX Live 2018 and SWI-Prolog 8.0.3. Other
comparable TeX distributions as well as older versions of SWI-Prolog (e.g., versions 7.X)
might also work.

2.2 Supported Platforms

The environment should work on all Unix-like platforms like Linux and OS/X.

On Microsoft Windows it works with Cygwin with the included SWI-Prolog package
pl-7.2.3-1 and TeX Live 2018. It has been tested there with an installation of TeX
Live 2018 that is independent from Cygwin (i.e., not as Cygwin package) and made

3https://www.swi-prolog.org/features.html, accessed Nov 21 2019.

4

https://www.swi-prolog.org/features.html

accessible from the Cygwin shell by adding its directory with binaries to PATH (e.g., in
.bash_profile).

3 Notation and Shorthands Used in this Document

• [KLM]: KBSET/Letters Markup, as specified in Jana Kittelmann and Christoph
Wernhard: KBSET/Letters Markup (KLM): Parsimonious Descriptive Markup for
Scholarly Editions of Correspondences.4.

• KBSET: The root directory of the KBSET distribution, by default called kbset.

• DOCDIR: The user’s working directory for the scholarly edition project.

• $: Indicates a shell command invocation.

4 Installation

• KBSET is distributed as a directory, which is either generated via git or created
by unpacking a TAR archive. (git facilitates updating that directory with new
versions of the distribution.) That directory, referred to as KBSET in this documen-
tation, can be placed anywhere on the system. It should be writable for the user
because some larger Prolog source files (e.g., with lists of words) are automatically
compiled to SWI-Prolog’s quick load format when they are loaded for the first time.
The compiled files are stored at the same place as the sources.

• The directory KBSET/bin should be added to the command search path, for example
by a line

PATH=$PATH:KBSET/bin

in ˜/.profile (or ˜/.bash_profile if there is no file ˜/.profile), where KBSET
stands for the path name of the KBSET directory.

• It must be ensured that pdflatex finds the content of latex/kbset. This can be
achieved, for example, by linking or copying KBSET/latex/kbset to

TEXMFHOME/tex/latex/kbset,

where TEXMFHOME stands for the value of:

$ kpsexpand ’$TEXMFHOME’

The success of the installation can be checked by:

$ kpsewhich -progname=pdflatex kbsetletters.sty

4Available from http://cs.christophwernhard.com/kbset

5

http://cs.christophwernhard.com/kbset

5 Typical Set-Up and Overview on Files and Directories

A typical DOCDIR directory, that is a KBSET/Letters working directory for a scholarly
edition project, contains files and directories as discussed below. (Of course, DOCDIR must
be writable for the user, since the LATEX workflow and the KBSET core processor place
their outputs there.) For an example see

KBSET/example/letters_mini

1. Two LATEX main files. In the example, these are main.tex and main_devel.tex.
The first represents the final document, the second an intermediate document that
is useful for developing the scholarly edition and can be processed just by a LATEX
workflow, without invoking the KBSET core processor.

Both main files include at processing further LATEX files. A difference between
them is that the first includes files that will be generated by the KBSET processor,
while the second one only files that are supplied by the user of included with the
KBSET system. Main files contain the technical setup of the LATEX environment
for KBSET/Letters. User options are described in Sect. 6 below.

2. LATEX files with letters and with annotations, that is, with letter and annotation
environments (see [KLM]). In the example there is just a single letters and a single
annotation file letters.tex, and annotations.tex, respectively.

3. LATEX files with fact bases (see [KLM]). In the example there is only one such file:
factbase.tex.

4. Further LATEX files that are included in the main files. In the example, these are
specials.tex (some hyphenation rules for 18th century German) and appendix.tex
(writing of bibliography and indexes).

5. Further directories. In the example: bib, extras_html, data and gendata. See
Sect. 7.3 below.

6. A file kbset_config.pl with the configuration of the KBSET core processor for
the project. See Sect. 7 below.

6 LATEX Set-Up in Main Files

Main files contain the technical setup of the LATEX environment for KBSET/Letters, as
shown in the example files

KBSET/example/letters_mini/main.tex and
KBSET/example/letters_mini/main_devel.tex

6.1 Toggles

Some KBSET/Letters-specific settings can be specified by LATEX toggles in main files.

6

[toggle] useminion
Use the MinionPro font, if it is installed. Default: false.

[toggle] minionlooseqoutes
If MinionPro is used, load it with the loosequotes option. Default: false.

[toggle] usefrutiger
Use the Frutiger font as sans-serif, if it is installed. Default: false.

[toggle] histcurrencysymbols
Use images for historic currency symbols. The images need to be installed sepa-
rately. Default: false.

[toggle] linerefsversal
In page/line references in annotations: Use lining figures (Versalziffern) and sub-
script instead of non-lining figures (Mediävalziffern) with superscript. Set auto-
matically to true if MinionPro is used. Default: false.

[toggle] marginmarks
Indicate text places in letters which have an associated annotation with an aster-
isk on the margin. Requires consideration in the geometry options, for example
by reversemarginpar or by marginparsep=16pt,marginparwidth=10pt. Default:
false.

[toggle] inversevideo
Inform the system that the representation is bright text on dark ground (the toggle
alone does not effect the color change). Default: false.

[toggle] swissquotes
Use French quotes with Swiss instead of German (and Austrian) style: «Swiss»,
‹Swiss›, »German«, ›German‹. Default: false.

[toggle] showundefs
Show undefined entities in indexes. (Also if the toggle is not set, the undefined
entities can be determined by grep IDX from the .log files.) Default: false.

[toggle] printxmeta
Print out information declared with \xmeta statements. The information is printed
at the beginning of the respective annotations. Default: true.

[toggle] showids
[Not maintained] Show symbolic letter identifiers in headers of letters and annota-
tions (for debugging). Default: false.

[toggle] showqrcode
[Not maintained] Print a QRCode with the letter URL in the header of an an-
notation. An experimental way of linking printed and digital formats. Default:
false.

7

[toggle] debugmeta
[Not maintained] Highlight meta information (for debugging), e.g., by colors. De-
fault: false.

[toggle] debugmargin
[Not maintained] Show meta information in the margin (for debugging). Default:
false.

6.2 Indexes

At LATEX processing with the kbsetletters style several indexes for xindy are created.
Headers for them are defined in the kbsetlettersinit style file such that they can be
redefined with \renewcommand after loading that style file and re-used for printing out
the indexes, as shown in appendix.tex in the example.

Index Title Command Indexed Items

per \idxnamePer Persons and works
cor \idxnameCor Corporations, institutions
jou \idxnameJou Journals
geo \idxnameGeo Geographical locations
dat \idxnameDat Date specifications
eve \idxnameEve Events
sub \idxnameSub Subjects, concepts

6.3 Further Redefinable Commands

\bibliographyTitle – main title of the bibliography, used similarly to \bibname. \annotationChapterTitle
– title of the annotation chapter, used in page headers. \pageformat – determines a file
with page format settings.

7 Configuration

7.1 The KBSET/Letters Configuration File

The complete project specific configuration of the KBSET/Letters core tools is in a single
configuration file that is written in Prolog syntax, for example

KBSET/example/letters_mini/kbset_config.pl

and loaded into SWI-Prolog after loading the KBSET/Letters core system.

The shell scripts that come with KBSET automatically load such a configuration file, as
specified in Sect. 8.

8

7.2 File and Directory Specifiers

Note on Prolog Syntax. Configuration files are written in Prolog syntax. For users
unfamiliar with that syntax, here are a few notes:

In the configuration files, file and directory specifiers are represented by Prolog symbols
(technically called atoms). These can contain arbitrary characters and in general have
to be written in single quotes. If the first character is a lowercase letter and all other
characters are alphanumeric or the underscore _, then the single quotes can be omitted.
The empty atom is denoted by ”.

Certain configuration keys can have a set of values, represented by a Prolog list. A list is
written in square brackets [and]. Its elements are separated by commas. The empty
list is written as []. As a special case we use lists of key=value pairs

As the Prolog syntax is term-oriented, white space can be used arbitrarily to facilitate
readability.

Determining DOCDIR. The directory DOCDIR is determined as follows:

• If SWI-Prolog was invoked with an application command line argument

–docdir=DocDir,

then DocDir is taken.

• Else, if the environment variable KBSET_DOCDIR is bound, its value is taken.

• Else, the directory containing the file in which the predicate kbset_config/2 was
defined (typically kbset_config.pl) is taken.

Interpretation of File and Directory Specifiers. A path name specifier (i.e., a
specifier of a file or directory) is interpreted as follows:

• If the specifier begins with /, then it is taken as an absolute filename.

• If the specifier is of the form ˜/PathName, then PathName is taken relative to the
user’s home directory (as determined by getenv(’HOME’, X) in SWI-Prolog).

• If the specifier is of the form ../PathName, then PathName is take relative to
the parent directory of DOCDIR. A prefix of repeated occurrences of ../ is handled
analogously.

• Else, the specifier is taken as path name relative to DOCDIR.

7.3 Configuration Keys

[config-key] appdata_dir
Directory with data files (in Prolog syntax) that are specific to the edition project.
Example: data.

9

[config-key] bib_dir
Directory with BibLaTeX bibliography data files. Example: bib.

[config-key] gendata_dir
Directory used by the KBSET processor for certain generated files. Example:
gendata.

[config-key] html_output_dir
Directory used by the KBSET processor for generated HTML documents. Exam-
ple: ’˜/tmp_letters_mini’.

[config-key] letter_latex_sources
List of LATEX files with letters (letter environments [KLM]). The suffix .tex is
omitted. Example: [letters].

[config-key] annotation_latex_sources
List of LATEX files with annotations (annotation environments [KLM]). The suffix
.tex is omitted. Example: [annotations].

[config-key] annotation_section_order
List of titles of ksections (sections in the annotation environment) in the order
in which they should appear in final documents. The titles are specified as words
separated by single spaces (punctuation and whitespace in the respective matching
source document titles is ignored). Example:

[’Überlieferung’,
’Datierung’,
’Anschrift’,
’Einschluss und mit gleicher Sendung’,
’Vermerke und Zusätze’,
’Varianten’,
’Stellenkommentar’]

[config-key] factbase_latex_sources
List of LATEX files with fact bases [KLM]. The suffix .tex is omitted. Example:
[factbase].

[config-key] biblatex_sources
List of BibLaTeX bibliography data files stored in the directory specified as bib_dir.
The suffix .bib is omitted. Example: [sulzer_sek, sulzer_prim].

[config-key] data_sources
List of data files in Prolog syntax or in HTML5 stored in the directory specified as
appdata_dir. The suffix .pl is omitted. Example:
[autographs, images, geostuff, personstuff, ’persontexts.html’].

HTML files are useful to represent data values that are maintained as HTML
fragments. These files are processed by extracting each element of the form <div

10

class=xentry-Predicate id=Id >Content </div> and converting it to a fact

Predicate (Id,Content).

In the fact representation Id is converted to the ID used in LATEX and Prolog (whose
special characters my differ from the ID used for HTML, XML and document
names), and Content is a list of element/3 terms in the HTML representation of
SWI-Prolog. A predicate Predicate can have for a given Id at most one such fact.

[config-key] html_options
List of key=value pairs with options for the HTML generation. Example:
[maintitle=’Beispiel’,
search_action=’http://www.mysite.com/cgi-bin/search.cgi/search.html’,
bibsections=[sect(idsek,’Sekundäliteratur’,[+sek]),

sect(idprim,’Primärliteratur’,[+prim])]]

[config-key] html_extras
List of files and directories that should be copied to the directory specified as
html_output_dir in addition to the generated HTML pages. Example:
[’extras_html/index.html’,
’extras_html/style.css’,
’˜/spacerepos/sb_auxfiles/img’,
’˜/spacerepos/sb_auxfiles/aut’]

8 Shell Scripts

8.1 General Remarks

Directory from where to Run these Scripts. All of these scripts are expected to
be run from the DOCDIR directory.

Determining the KBSET/Letters Configuration. The scripts with prefix

letters_gen_

are controlled by a KBSET/Letters configuration file (Sect. 7), which is determined as
follows:

• If an argument is supplied, it is taken.

• Else, if the environment variable KBSET_LETTERS_CONFIG is bound, its value is
taken.

• Else, the file kbset_config.pl in the current working directory is taken.

The script letters_check_db.sh proceeds in the same way, except that its optional
second argument can specify the configuration file.

11

8.2 Scripts

[script] letters_check_latexdb.sh FactBase.

FactBase is a LATEX file with just fact base statements [KLM]. (The db....tex files in
the provided example are such files). Outputs some information about syntactic validity
and semantic consistency.

[script] letters_gen_annotations.sh

Generates the file generated_annotations.tex, which contains the annotation environ-
ments in the files configured as annotation_latex_sources, ordered in correspondence
to the ordering of letter environments by letters_gen_annotations.sh.

[script] letters_gen_dbs.sh

Generate Prolog versions of the LATEX fact bases configured as factbase_latex_sources.
The generated files are written into the directory configured as gendata_dir.

[script] letters_gen_html_bib.sh

Generates an HTML presentation of the bibliography configured as bibtex_sources
and an additional data file for use in HTML conversion of letters and annotations. The
HTML output is written to the directory configured as html_output_dir, the addi-
tional file to gendata_dir. As a first step, the script invokes biblatex in a mode that
creates an XML representation of the preprocessed bibliographic data base. This repre-
sentation is then read-in and further processed by the KBSET core system. The result
depends on outputs of letters_gen_html.sh (to determine the cited works) and vice
versa (to determine the bibliography labels used in citations). Thus, to get proper results,
letters_gen_html_bib.sh should be called between two calls of letters_gen_html.sh.

[script] letters_gen_html_extras.sh

Copies files and directories configured for the html_extras key to the directory configured
as html_output_dir. Typically, these are stylesheets, an index file and images.

[script] letters_gen_html.sh

Generates a HTML presentation of the project. The output is written to the directory
configured as html_output_dir. Requires files previously generated by

letters_gen_reordered.sh,
letters_gen_annotations.sh,
letters_gen_dbs.sh, and
letters_gen_html_bib.sh.

[script] letters_gen_reordered.sh

12

Generates the file generated_letters.tex, which contains the letter environments
in the files configured as letter_latex_sources, ordered by date. The ordering takes
various forms of incomplete date specifications into account: If the day is unknown, it is
placed at the end of the month. If day and month are unknown, it is placed at the end
of the year. If the date is specified as before or after a specific date, it is sorted as if the
value for day would be one less or one more, respectively, than the specified date. For
date ranges, the last value of the range is considered. If letters are considered to have
equal dates, they are ordered by lexically comparing the sequence FromId, ToId, LetterId
as given in the header of the letter environment. (In future version the names of the
persons may be considered here instead of the Ids).

[script] letters_xindy.sh MainFile

MainFile is a LATEX main file, written without .tex suffix. Invokes the xindy in-
dexing system on MainFile with suitable options for the indexes created with the KB-
SET/Letters LATEX styles.

[script] letters_gen_metadata_export.sh

Generates a file with Prolog facts that represents meta data for the edition project for
use in other applications. The meta data are extracted and combined from various
sources used for the edition project. This is currently at an experimental stage. In
the future, a set of predicates that represent the meta data should be specified. Re-
quires files previously generated as specified for letters_gen_html. The output file is
gendata_dir/generated_metadata_export.pl.

9 Usage Scenarios

9.1 General Notes

Directory from where to Run these Scenarios. All of these scripts are expected
to be run from the DOCDIR directory.

Assumed File Names We assume two LATEX main files main.tex and main_devel.tex
as in the example

KBSET/example/letters_mini

and explained in Sect. 5. (Of course, in a particular project, respective files can have
other names.)

Repeated Runs of pdflatex. LATEX operates with auxiliary files that are created in
a processing run and reconsidered in the next run. Thus, LATEX processors typically have
to be invoked several times on the same document. We indicate this in the following usage
scenarios by two consecutive runs of pdflatex. In practice, during development, often a

13

single run is sufficient for an acceptable result if there have been only minor document
changes since the previous run of pdflatex. On the other hand, for production quality
results, it is recommended to invoke pdflatex even more than two times, say four times
to be sure, in these stages.

Why there are so Many Explicit Steps at the Scenarios? It is of course easily
possible to combine the listed steps into a single script. However, at each stage there is
the possibility of errors or inconsistencies, such that the automated combined processing
seems not very useful during the development of editions. Often, during development,
the work is only refined with respect to a single stage.

9.2 PDF Generation During Development

1. $ pdflatex main_devel
2. $ biber main_devel
3. $ pdflatex main_devel
4. $ letters_xindy.sh main_devel
5. $ pdflatex main_devel

9.3 PDF Generation
1. $ letters_gen_reordered.sh
2. $ letters_gen_annotations.sh
3. $ pdflatex main
4. $ biber main
5. $ pdflatex main
6. $ pdflatex main
7. $ letters_xindy.sh main
8. $ pdflatex main
9. $ pdflatex main

9.4 HTML Generation
1. $ letters_gen_reordered.sh
2. $ letters_gen_annotations.sh
3. $ letters_gen_dbs.sh
5. $ letters_gen_html.sh
5. $ letters_gen_html_bib.sh
6. $ letters_gen_html.sh
7. $ letters_gen_html_extras.sh

10 Consistency Validation

Consistency checking of an advanced digital scholarly edition is a complex and subtle
topic. Here are some suggestions. We assume the LATEX main file called main.tex.

14

10.1 General Remarks

Basic Consistency Checking with the Standard LATEX Workflow Of course,
the plain LATEX workflow with pdflatex, biber and xindy already provides some basic
validation. Here are some further suggestions and examples.

Output Redirection to a File. Often it is useful to have lengthy output and error
log of conversion operations with warnings available as a file. This is possible in the Bash
shell with IO-redirection as in the following example:

$ letters_gen_html.sh &>tmp_outputs.txt

Directory from where to Run these Scenarios. All of these scripts are expected
to be run from the DOCDIR directory.

10.2 Basic Validation Beyond the LATEX Standard Workflow

1. $ letters_check_latexdb.sh factbase.tex
$ letters_check_latexdb.sh dbperson.tex
$ letters_check_latexdb.sh dbwork.tex
$ etc., for each LATEX fact base

2. $ letters_gen_reordered.sh
3. $ letters_gen_annotations.sh
4. $ letters_gen_html.sh

10.3 Validation on the Basis of LATEX Log Files

First we invoke pdflatex twice to create a log file and ensure that cross references are
properly handled:

$ pdflatex main
$ pdflatex main

Now we can search with grep for relevant messages in the file main.log created by
pdflatex. For example:

$ grep KBSET main.log
$ grep IDX main.log
$ grep IDX main.log | sort -u >tmp_undef.txt
$ grep multiply main.log
$ grep undefined main.log
$ grep undefined main.log | grep Reference
$ grep Warning main.log
$ grep NOTE main.log

15

10.4 Validation of the Bibliography

We call pdflatex and biber:

$ pdflatex main
$ biber main

and check the output of biber for ERROR and WARNING. We the call pdflatex again:

$ pdflatex main

because some errors related to the bibliography only show up then. Also the HTML
conversion of the bibliography shows possible inconsistencies:

$ letters_gen_html_bib.sh

10.5 Further Possibilities

Also the XML/HTML-validation of the output of the HTML generation shows inconsis-
tencies, for example duplicate identifiers in a letter. This can be performed, for example,
by the program tidy, which is also available as free software:

$ cd my_html_output_directory
$ tidy -qe letter-l001.html
$ for l in letter*.html; do echo $l; tidy -qe $l; done

Further possibilities are dedicated programs to check complex constraints. These could
be written in SWI-Prolog and take as basis either the Prolog representation of the read-in
documents that is used for HTML generation, or the generated HTML, which can be
easily read in to term form into SWI-Prolog .

11 Using the System from Prolog

11.1 Overview on Relevant Modules

With exception of letters_xindy.sh, the scripts described in Sect. 8 invoke SWI-Prolog .
The predicates underlying the scripts are in the module

kbset_letters(letters_interface).

From there, their functionality can be traced further to the particular modules that
realize it. The KBSET/Letters core system is loaded into SWI-Prolog by loading

KBSET/core/letters_load.pl.

If then a KBSET/Letters configuration is loaded, for example,

KBSET/example/letters_mini/kbset_config.pl,

the system is ready.

16

Instead of KBSET/core/letters_load.pl also KBSET/core/load.pl can be used, which
loads the same modules as letters_load.pl and additional modules for the full func-
tionality of KBSET .

Invocation of extract_letters/0 effects that a representation of letters, including meta
information, by a predicate letter/3 and some other predicates exported by the module
kbset_letters(extract_letters) is created. (Invocation of extract_letters/0 re-
quires that intermediate files have been generated before by letters_gen_annotations.sh,
letters_gen_letters.sh, letters_gen_dbs.sh or their Prolog equivalents). Meta in-
formation on other entities is exported by the module kbset_letters(data_interface).
These predicates form a representation of the digital edition as fact base. It is easy to
write Prolog programs that realize queries of various forms on such a fact base, or to
export portions of it as Prolog fact bases for other applications and further querying.

11.2 Conversion to Further Formats

This internal representation can also be used as basis for conversions into other for-
mats, as shown for HTML. Conversion of identifiers to URIs is implemented in module
kbset_letters(kbmappings). Module kbset_letters(textconvert) is used for the
HTML transformation of the Prolog representation of parsed LATEX fragments and may
be modified for conversions to other formats. So far, there are no specific translations
into further formats included with the system.5 For now, the module

kbset_letters(export_demos)

is provided to illustrate how the Prolog fact bases, either present in the system as result
of, e.g., extract_letters/0, or by loading Prolog files with facts, can be converted to
RDF/XML and to certain elements of TEI/XML that represent metadata. In addition,
it is sketched there how images with graph representations can be generated from Prolog
fact bases with the dot tool of Graphviz, provided with the module swilib(dotgraph).

5In general, specializations of TEI/XML and RDF/XML are relevant there. Actually, it is not
yet clear, which particular such specializations formats would be of interest. Criteria would be the
integration with other editions and metadata repositories and the use of further tools to generate high-
quality presentations.

17

	Introduction
	Prerequisites
	Required Further Software
	Supported Platforms

	Notation and Shorthands Used in this Document
	Installation
	Typical Set-Up and Overview on Files and Directories
	LaTeX Set-Up in Main Files
	Toggles
	Indexes
	Further Redefinable Commands

	Configuration
	The KBSET/Letters Configuration File
	File and Directory Specifiers
	Configuration Keys

	Shell Scripts
	General Remarks
	Scripts

	Usage Scenarios
	General Notes
	PDF Generation During Development
	PDF Generation
	HTML Generation

	Consistency Validation
	General Remarks
	Basic Validation Beyond the LaTeX Standard Workflow
	Validation on the Basis of LaTeX Log Files
	Validation of the Bibliography
	Further Possibilities

	Using the System from Prolog
	Overview on Relevant Modules
	Conversion to Further Formats

