
KBSET/NER – User Guide

Christoph Wernhard

Draft – March 2, 2021

Copyright © 2016, 2019, 2021 Christoph Wernhard

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts.

Contents

1 Introduction 3

2 Installation 4
2.1 Requirements . 4

2.1.1 Further Software . 4
2.1.2 Data Files . 5
2.1.3 Platforms . 5

2.2 Configuration . 5
2.3 Suggested Emacs Setup . 5
2.4 Invoking the System . 6
2.5 Downloading and Preprocessing External Data 6
2.6 Installation Hints for Microsoft Windows Platforms 7

3 Emacs Interface 7
3.1 Involved Mode, Buffers and Outputs . 7
3.2 Menus and Key Bindings . 8
3.3 Prolog Predicates Underlying the Emacs Interface 11

4 Assistance Documents 12
4.1 Conventions . 12
4.2 General Setup . 12

4.2.1 Specifying Paths to Auxiliary Directories 12
4.2.2 Specifying File Locations . 13

4.3 Specifying External Knowledge Sources and their Preprocessing 13
4.4 Loading Preprocessed External Data into the System 13
4.5 Configuration of the Source Document Parsing 13
4.6 Associating Annotation and Source Documents 13
4.7 General Control of Named Entity Recognition 14
4.8 Specifying Global Context Settings . 14
4.9 Supplementing Word Data . 15
4.10 Supplementing Further Entities . 15
4.11 Specifying Assistance to Named Entity Recognition 15
4.12 Activating a Combination of Named Settings 16
4.13 Summary of Predicates Defined and Used in Assistance Documents 17

5 Annotation Documents 18

2

1 Introduction

KBSET/NER is an experimental system to investigate possibilities of knowledge-based
support for scholarly editing and text processing. The system should help to develop
precise notions of knowledge processing tasks that arise in advanced scholarly text edit-
ing in presence of today’s large semantic fact bases such as Wikipedia extracts or the
Gemeinsame Normdatei (GND).

The system is implemented as free software, available from

http://cs.christophwernhard.com/kbset/.

It runs on Linux, Mac/OS X and with some restrictions also on Windows. (Offline caches
of external knowledge bases can only be precomputed on a Linux or Mac/OS X platform,
but once prepared, these cached data can be used on Windows.) A rare German book
from the 19th century, Max Stirner: Geschichte der Reaction, Band 1. Berlin, 1852,
has been used as example during development. It is enclosed in full with the system to
provide further user documentation.

For the future, a systematic redesign of the configuration language, the internal query
processing as well as the caching of external knowledge sources is planned.

In a typical setting, the system takes as inputs:

1. A source text file, possibly in LATEX format.

2. Annotation documents, that is, text files with annotations, possibly in LATEX for-
mat. The associated places in the source text to which they are referring are
specified abstractly.

3. Large fact bases, currently in particular GND and GeoNames as well as extracts
from YAGO2 and DBpedia.

4. A so-called assistance document, that is, a configuration file, where, among other
things, the fact bases are specified and information is given to bias or override
automated inferencing such that fully correct results are obtained.

The system produces a variety of outputs, including:

• LATEX documents where annotations and inferred information are merged in. By
passing unrestricted access to LATEX to the user, high-quality layouts can be achieved.

• Support during development by possibilities to highlight and inspect entities rec-
ognized by the system.

• An export possibility to visualize detected locations mentioned in the source text
with the Dariah geobrowser.

A typical application would be the development of an annotated essay or book, where
the source text is edited in LATEX and the configuration evolves step-by-step until the
inferred information is fully correct. A simpler application is to present a text file with
location names to the system, let it detect the locations and produce an input file for the
Dariah geobrowser.

3

http://cs.christophwernhard.com/kbset/

A user interface integrates the system into the Emacs editor, which is free software.
Emacs is then used to edit the source texts as well as to give access to the full functionality
of the KBSET system, through menus, key bindings and by issuing commands to the
underlying interpreter of the Prolog programming language. Emacs further supports
editing and activating configuration files, which are written in Prolog readable syntax.

The system includes a component for named entity recognition that currently applies
to persons, locations and dates. Phrases are not just classified according to their type,
but designated entities are actually identified. The technical basis is rule processing. For
each type of entity the text is scanned separately. Recognition of dates is essentially
done by parsing. Recognition of persons and locations is performed with a gazetteer
that combines information in a configurable way from sources such as GND, GeoNames
and DBpedia. It operates with respect to given single words, but with access to the
preceding and succeeding text as well as to other information. A special mode is used to
identify persons that are specified by a functional role, e.g., king of France. A fixed series
of features is evaluated for each candidate entity. Entities are then ranked by lexical
comparison of their associated series of values. This is performed in two steps: First
some of the candidate entities are quickly ruled out based on features that are cheap to
evaluate. The second step then takes further features into account.

Results of named entity recognition are presented to the user who works on a text edition
by highlighting words and displaying a ranked series of candidate entities. If one entity
is ranked strictly above the others, the item is considered as identified. For each ranked
entity also a representation of the rationale that led the system to choose it as candidate
is shown in form of the a listing of the relevant feature values. On this basis, the
assistance document can now be refined by the user: The features to consider as well
as their ordering can be modified. Information about the general context, such as the
years concerned by the object text can be given. Additional information about entities
that is not present in the imported large knowledge bases, such as particular alternate
names or functional roles, can be supplemented. The ranking of particular entities can be
promoted by explicitly referencing to them in the assistance document, possibly qualified
with a precondition, e.g., another specific word occurring nearby.

2 Installation

2.1 Requirements

2.1.1 Further Software

• SWI-Prolog (tested with version 8.2.4)

• A TEX distribution (tested with TeX Live 2020)

• GNU Emacs (tested with version 25.2.2)

4

2.1.2 Data Files

A TAR archive with preprocessed extract of the data required for the enclosed example
can be downloaded from http://cs.christophwernhard.com/kbset/datasets.html.
This should be unpacked to a writable directory (SWI-Prolog compiles the files to quick
load format files that are stored in the same directory). The space needed is around
1.2GB.

Alternatively, the data can be downloaded and preprocessed. See Sect. 2.5. Around 5GB
of disk space are then needed for the data files and preprocessing outputs.

2.1.3 Platforms

The system has been tested on Linux and (in previous versions) on OS/X. It also runs
on Microsoft Windows with some restrictions and workarounds (see Sect. 2.6).

2.2 Configuration

The system configuration is specified in examples/stirner_reaction/assistance01.pl.
In particular, the following lines might need adaption:
:- register_file_path(tmp(_), ’~/tmp/’).
:- register_file_path(bigdata(_), ’~/space/bigdata_stirner/’).

These point to a directory where the system can store temporary files and the directory
with the data files (Sect. 2.1.2). The symbol ˜ is understood by the system as the user’s
home directory (determined by getenv(’HOME’, X) in SWI-Prolog).

In elisp/kbset.el set *kbset-tmpdir* to the directory for temporary files specifed in
assistance01.pl. (Alternatively, it is possible to leave elisp/kbset.el unmodified and
set *kbset-tmpdir* before loading elisp/kbset.el).

For processing sources with more than 2,000 entities, the Emacs variable *kbset-high-timeout*
might need adaption. See elisp/kbset.el.

2.3 Suggested Emacs Setup

1. Create an executable script file, e.g., /home/ch/bin/swi-kbset with the follow-
ing content (possibly after replacing f$HOME/kbset with the place of the kbset
directory at your system):
#!/bin/bash
swipl --no-tty --stack_limit=12g -s ${HOME}/kbset/core/load.pl

2. Insert this (with pathnames adapted) into your ˜/.emacs file:
(setq *kbset-tmpdir* "/home/ch/tmp")
(load "/home/ch/kbset/elisp/kbset.el")
(defun run-kbset ()

(interactive)
(kbset-minor-mode 1)

5

http://cs.christophwernhard.com/kbset/datasets.html

(let ((prolog-program-name "/home/ch/bin/swi-kbset"))
(run-prolog nil)))

2.4 Invoking the System

1. Start Emacs, start the system Prolog shell with M-x run-kbset.

2. Consult an assistance file, e.g., examples/stirner_reaction/assistance01.pl.

3. Load data from the Prolog shell:
?- load_data.

The predicate load_data/0 is defined in the example assistance file assistance01.pl.

For the example, this takes about 1.5 minutes. At the first time it takes about 6
minutes because SWI-Prolog then compiles the data files to its quick-load format.

4. Consult the assistance file again to merge supplementary information with the
loaded data.

5. Visit the sourcetext file in a buffer (e.g., examples/stirner_reaction/src/reaction_01_16.tex).

M-x kbset-minor-mode toggles the Kbset minor mode.

In that mode, various actions are offered in the Kbset Menu. Process file (re-)reads
the sourcetext file and enables the other actions.

Process file takes about 20 seconds for the example. (At the first run somewhat
longer as SWI-Prolog internally sets up predicates.)

2.5 Downloading and Preprocessing External Data

This step is not needed for the example document, as the data can be directly retrieved
in preprocessed form (see Sect. 2.1.2).

As this step invokes several shell commands, it is only implemented for Linux systems
and requires 7z installed as shell command.

1. Start Emacs, start the system Prolog shell with M-x run-kbset.

2. Consult an assistance file, e.g., examples/stirner_reaction/assistance01.pl.

3. Start the downloading and preprocessing from the Prolog Shell:
?- prepare_data.

For the example, prepare_data/0 is defined in assistance01.pl. prepare_data/0 takes
already downloaded and preprocessed files that are present in the configured “bigdata”
directory, along with their timestamps, into account, such that it can simply be called
again after an error or other interruption. (In some situations incompletely generated
files in the “bigdata” directory need to be removed before re-invoking prepare_data, such
that they are re-created).

6

2.6 Installation Hints for Microsoft Windows Platforms

Note: In the following examples some scripts and auxiliary files are stored in places which
would be found on a Unix system and are provided by Cygwin for Windows. However,
Cygwin is not required for KBSET and these files could also be stored in other places.

Example of the Settings in the ˜/.emacs File

(setq *kbset-tmpdir* "c:tmp_kbset")
(load "c:kbset/elisp/kbset.el")
(defun run-kbset ()

(interactive)
(kbset-minor-mode 1)
(let ((prolog-program-name

"c:\\cygwin\\home\\ch\\bin\\swipl-kbset.bat"))
(run-prolog nil)))

Example of the swipl-kbset.bat Script

In the script, all of the following has to be in one line:
"c:\Programme\swipl\bin\swipl.exe"

-f c:\cygwin\home\ch\swipl-emacs-init.pl
--stack_limit=12g -s d:/kbset/core/load.pl

Example of swipl-emacs-init.pl

Note: On Windows, SWI-Prolog when run within GNU Emacs does by default not
properly run in TTY mode.
:- set_stream(user_output, tty(true)).
:- set_stream(user_error, tty(true)).
:- set_stream(user_input, tty(true)).

Excerpts of an Assistance File that Show the Respective Filename Syntaxes

:- register_file_path(tmp(_), ’D:/kbset_tmp/’).
:- register_file_path(data(_), ’D:/kbset_data/bigdata_stirner/’).

annotated_by(’c:/cygwin/home/ch/kbset_example/src/reaction_01_16.tex’,
’c:/cygwin/home/ch/kbset_example/apparat/annot_reaction_01.tex’).

3 Emacs Interface

3.1 Involved Mode, Buffers and Outputs

The kbset minor mode provides a menu and key bindings which give access to the main
user functionality of KBSET. This minor mode can be activated and deactivated by

7

kbset-minor-mode. It can be used together with other modes, for example to support
LATEX.

The Emacs command run-kbset invokes SWI-Prolog with the KBSET system loaded.
The *prolog* buffer provides a command line interface to the Prolog interpreter.

Outputs of the KBSET system are placed in the following respective locations:

• Printed in the *prolog* buffer.

• Highlighted in the source text buffer.

• Shown in one of the auxiliary buffers, which are displayed read-only in a second
window,

– *kbset-info*,

– *kbset-results*.

• Generated (“rendered”) files in different formats.

3.2 Menus and Key Bindings

The following menu and key bindings are associated with the kbset minor mode.

Some of the menus invoke Prolog commands, written in typewriter font in the descriptions
below. The actual parameterized predicates submitted to Prolog are displayed in the echo
area of Emacs and placed in the command line history of the *prolog* buffer such that
they can be called again or reviewed with M-p and M-n in that buffer.

• Process source

Call process_source on the buffer’s current file and highlight recognized items
in the buffer. The source file is parsed there and named entity recognition is
performed, according to the active settings as described in Sect. 4.

The source file is expected to be encoded in UTF-8. It can be a plain text document,
a LATEXdocument or an XML document. Advanced parsing and operations are
supported for LATEX. XML documents are identified by the file extension .xml or
.tei. They are simply treated like plain text with the exception that all text enclosed
in angle brackets is taken as “opaque”, that is, not considered in operations such as
entity identification, but preserved and passed through to the output.

• Goto: Next recognized item (C-.)

Move cursor to next highlighted (i.e. recognized) item and show information about
it in the *kbset-info* buffer.

The shown information is similar as described for menu Summary: Persons.

• Goto: Previous recognized item (M-.)

Analogous to Goto: Next recognized item.

8

• Browse URL (C-/)

Open URL at point, or if in the source file, associated with the point (i.e. displayed
currently in the *kbset-info*), in Web browser.

• At point: Show NER candidates

(documentation to be written)

• At point: Show structural content

(documentation to be written)

• At point: Show semantic content

(documentation to be written)

• Summary: Persons

Invoke show_person_summary on current source and display the result in the *kbset-
result* buffer. Information comes from the last run of process_source (see menu
Process source).

The starts of each entry in the summary are marked with * such that it is easy to
skip between them with C-s and C-r.

A headline shows general information, such as the number of recognized entities.

Each recognized entity is then represented by an entry. Entries are ordered accord-
ing to the frequency of their recognized occurrences.

For each entry the following is shown: The corresponding words occurring in the
text, along with their number of occurrences. If the recognition is ambiguous (other
candidate entities are ranked equally well), this is indicated. Information about
the entity is given, e.g., the preferred name, years of birth and death, profession or
occupation, links to Wikipedia and GND. Then the derivation used to identify the
entity is shown. If different such derivations have been used on different occurrences
in the text, then all of these are shown.

• Summary: Locations

Like Summary: Persons but invoking show_location_summary.

The general information for locations includes for places with small population also
information about nearby larger, and thus presumably more well-known, places.
Aside of links to Wikipedia also links to OpenStreetMap and GeoHack are provided.

• Summary: Dates

Like Summary: Persons but invoking show_date_summary.

• Refresh display: Last result

9

Refresh the *kbset-result* buffer with the output of the last command that
affects it.

Useful since in some situations the automatic insertion of results from Prolog to
the *kbset-result* is not properly synchronized.

• Refresh display: Markings

Refresh the highlighting in the source buffer with the output of the last invocation
of Process source.

Useful since in some situations the automatic highlighting according to results from
Prolog is not properly synchronized.

• Clear display: Markings

Remove the highlighting resulting from Process source from the source buffer.

• Render annotated as LaTeX

Invoke render_latex_annotated on the file associated with the buffer. A LATEX
document is produced where information from annotations and the previous run of
process_source is merged in.

• Render...

Produce output in further formats, considering information from the previous run
of process_source.

– Render as plain text

Call render_plain. The result is a plain text representation of the source,
without LATEX commands.

– Render annotated with XML markup

Call render_rxml_annotated. The result is the input file (XML or plain text)
with TEI-compatible XML markup inserted to mark identified entities.

For the XML rendering, so far, only entities detected by person, location
and date identification are considered. The scope of the inserted XML ele-
ments spans the text which is taken as associated with the entity. For persons
and locations this is currently just a single word, contradicting the intended
semantics of the used TEI elements, which suggests to embed whole noun
phrases.

A designator of a person or location is wrapped with an element

<name resp="auto" type=TYPE key=KEY ref=URL>,

where TYPE is "person" or "place", respectively, KEY is an identifier stem-
ming from GND, GeoNames or from a user declaration of a new entity in an
assistance document. URL is an URL of a Web page representing the entity,
for example in Wikipedia, GND or GeoHack. If no such page is available, the

10

ref attribute is not provided. A date is wrapped with an element

<date resp="auto" when=DATE>,

where DATE is normalized according to W3C Recommendation XML Schema
Part 2: Datatypes Second Edition, as specified for TEI.

– Render entity/3 Prolog facts

Call render_entity_facts. The result is a Prolog file with facts representing
the recognized entities. Their form is:

entity(EntityType,EntityId,EntityPrettyName).

– Render Dariah CSV

Call render_dariah_csv. Produces a CSV file with recognized locations
for loading into the Dariah geobrowser http://geobrowser.de.dariah.eu/,
where they can be visualized. Previously recognized dates and persons are
associated with the locations.

– Render in NER style

Call render_ner_style. Produces a text file with output similar to other
named entity recognition systems.

3.3 Prolog Predicates Underlying the Emacs Interface

The Prolog predicates listed below are invoked from Emacs. They are described in
Sect. 3.2 in the context of the menus that invoke them. In the system they are gathered
in the module kbset_ner(ner_interface).

process_source/1
process_source/2
inspect_item_at_srcpos/2
show_person_summary/1
show_location_summary/1
show_date_summary/1
show_semantic_context_at_point/2
show_structural_context_at_point/2
render_latex_annotated/1
render_plain/1
render_rxml_annotated/1
render_entity_facts/1
render_dariah_csv/1
render_ner_style/1
set_verbosity/1

11

http://geobrowser.de.dariah.eu/

4 Assistance Documents

An assistance document specifies a system configuration of KBSET. It has the form of a
file in Prolog readable syntax and is loaded into the KBSET system the with the normal
Prolog mechanism for loading source files, that is, the consult predicate.

An assistance document can be reloaded at any time, where the specifications loaded
previously are replaced.

A convenient way to work with an assistance document is by editing it in the Emacs
editor, where common Prolog modes provide a key binding or a menu to load (“consult”)
the file associated with a buffer.

4.1 Conventions

File and directory names are atoms. Also words of text are represented by atoms. A
PropertyList is a list of Key=Value pairs, where Key is an atom.

4.2 General Setup

The module kbset_ner(ner_kbset) provides auxiliary predicates for use in assistance
documents. They are discussed below in the context of their application. To make
these predicates available, they have to be imported with the following statement at the
beginning of the assistance file:

:- use_module(kbset_ner(ner_kbset)).

The verbosity of the system can be controlled by statements

:- set_verbosity(Number).

Suggested values for Number are 50 and 1, respectively.

4.2.1 Specifying Paths to Auxiliary Directories

The system needs two auxiliary directories, one for temporary files and one for caching
downloaded external knowledge bases in source and preprocessed form. This has to be
set up with the following statements:

:- register_file_path(tmp(_), Directory).
:- register_file_path(data(_), Directory).

Directory is a path name specifier interpreted as follows:

• If the specifier begins with /, then it is taken as an absolute filename.

• If the specifier is of the form ˜/PathName, then PathName is taken relative to the
user’s home directory (as determined by getenv(’HOME’, X) in SWI-Prolog).

12

4.2.2 Specifying File Locations

Various files used by components of the system are addressed internally with symbolic
names. Their mapping to actual files is done with statements of the form:

:- register_file(SymbolicFileName, File).

SymbolicFileName is an atom. File is an absolute pathname or a term of the form
tmp(RelativeFile) data(RelativeFile), representing a file in the temporary or data direc-
tory.

4.3 Specifying External Knowledge Sources and their Preprocessing

By convention, a predicate prepare_data/0 is specified in the assistance file. It down-
loads external knowledge sources and preprocesses them, ensuring that load_data/0
(Sect. 4.4) can afterwards be successfully performed. A make-like mechanism to specify
and maintain dependencies is provided. It is invoked by dep_ensure/1, dependencies are
specified with dep/1, which has to be defined in the assistance file. See source of module
kbset_ner(prepare) for details.

4.4 Loading Preprocessed External Data into the System

By convention, a predicate load_data/0 is specified in the assistance file.

4.5 Configuration of the Source Document Parsing

The system parses LATEX documents. It properly recognizes many common LATEX com-
mands. Statement of the following form provide a hook to specify further commands,
either from LATEX or some of its packages or defined by in the source document:

:- register_latex_command(LaTeXCommand, LaTeXCommandMode, PlainText).

See source of module kbset_ner(readwrite) for documentation.

The following predicate specifies LATEX commands that delimit section-like units consid-
ered at keyword inference.

kwd_section_commands(ListOfLaTeXCommands).

4.6 Associating Annotation and Source Documents

An “annotated by” relationship between documents is specified by statements of the
following form:

annotated_by(Source,Annotation).

Source and Annotation are absolute file names. Associated annotations are also discussed
in Sect. 5.

13

4.7 General Control of Named Entity Recognition

Three predicates defined in the assistance document control how named entity recognition
is performed:

ner_processing_options(ListOfSpecifiers)

ListOfSpecifiers is a list of atoms from quotes, dates, function_persons, persons and
locations. Named entity recognition passes through this list from left to right and
performs the recognition for each indicated entity type one by one. Thus, the order of
items in the list might be relevant.

entity_features(EntityType,ListOfFeatures)

EntityType is one of person, function_person, location or date. ListOfFeatures is a
list of atoms or term patterns, each corresponding to a feature implemented for the re-
spective entity type. Candidate entities for a given word in a given context are compared
according to the list of features, lexically from left to right.

entity_threshold_features(EntityType,ListOfFeatures)

Similar to entity_features/2, however only features represented by atoms are allowed
in the list of features. Features specified by this predicate are used to reject candidate
entities straight away, before features whose values are more expensive to determine are
taken into consideration.

4.8 Specifying Global Context Settings

Named entity recognition is performed with a given context at hand, which contains
information that depends on the particular location in the text, that has been determined
previously by named entity recognition, and that is globally specified with the following
predicate:

def_context(+Name, +PropertyList)

It associates with Name (an atom) a property list that specifies global context settings.
The predicate make_effective (Sect. 4.12) can then be used to let these context settings
take effect in named entity recognition.

Some commonly used properties set here are:

14

Key Value Explanation

user_language de, en Language of the user interface
text_language de, en Language of the object text
text_language_variant e.g., de(19) Variant of the object text language,

e.g., German of the 19th century
stemming_language e.g., de(19) Language used for stemming
context_years ListOfNumbers Years on which the object text is about,

used to disambiguate entities

4.9 Supplementing Word Data

In named entity recognition databases of words that commonly occur with a lower case
first character and of words which are commonly used as substantive are used. Statements
of the following form can be used to extend these databases:

:- register_common_downcase(Word).
:- register_common_substantive(Word).

4.10 Supplementing Further Entities

Statements of the following form can be used to extend the database with further entities
of type person.

:- register_ext_person(Id, PropertyList).

Id is an atom, used to identify the person. The keys allowed in PropertyList correspond
to the GND, for example:
:- register_ext_person(lubersac_1740,

[preferredNameForThePerson = ’Lubersac, Jean-Baptiste-Joseph de’,
dateOfBirth = ’1740-04-15’,
dateOfDeath = ’1822-08-30’,
gender=male,
biographicalOrHistoricalInformation = lang(de,’Bischof von Chartres (1780-1790)’),
urL = ’https://fr.wikipedia.org/wiki/Jean-Baptiste-Joseph_de_Lubersac’]).

4.11 Specifying Assistance to Named Entity Recognition

Named entity recognition takes manually specified information into account at disam-
biguation. That information can be specified with the following predicate:

def_assistance(Name, ListOfAssistanceStatements) .

It associates with Name (an atom) a list of assistance statements. The predicate make_effective
(Sect. 4.12) can then be used to let the statements take effect in named entity recognition.

Some of the assistance statements have a Condition argument. This is a list of condition
statements that are evaluated in the context of the word to be recognized. An empty list

15

represents a condition that is always satisfied. The following condition statements are
recognized:

Key Value Condition

word_in list of words current word is member of the list
near_word_in list of words a nearby word is in the list
following_words list of words the subsequent words are as specified,

in same order, punctuation and space is ignored
followed_by_words list of words the previous words are as specified,

in same order, punctuation and space is ignored

Some of the assistance statements have an EntityDesignator argument. This is a property
list that uniquely identifies an entity. If this fails after load_data has been invoked, an
error is raised.

Assistance statements of the following forms are accepted, where EntityType is one of
person or location.

no_entity(EntityType, Condition)

Entity recognition of the entity type is explicitly blocked for words matching the condi-
tion. (Typically used with a word_in condition.).

entity(EntityType, EntityDesignator, Condition)

The designated entity is preferred at disambiguation in contexts where the condition
applies.

entity(EntityType, EntityDesignator)

Same as entity(EntityType, EntityDesignator, []).

supplement(EntityType, EntityDesignator, PropertyLists)

Used to supply additional information about the designated entity. Currently the proper-
ties name (for alternate names not in the GND) and biographicalOrHistoricalInformation
(e.g., for adding functions not in the GND) are supported.

4.12 Activating a Combination of Named Settings

The following predicate, defined in the assistance document, specifies which of the context
and assistance specifications should take effect.

make_effective(Names).

Names is a list of names specified by def_context and def_assistance.

The following statement actually lets the specifications in the assistence document be-
come effective:

:- update_assistance.

16

4.13 Summary of Predicates Defined and Used in Assistance Docu-
ments

The following predicates are defined in the assistance document:

dep/1
kwd_section_commands/1
ner_processing_options/1
entity_features/2
entity_threshold_features/2
def_context/2
def_assistance/2
make_effective/1

The following predicates are exported by the kbset_ner(ner_kbset) module for use in
the assistance document:

update_assistance/0
add_assistance_update_hook/1
register_latex_command/3
register_file_path/2
register_file/2
set_verbosity/1
set_warnings/1
register_common_downcase/1
register_common_substantive/1
dep_ensure/1
install_gnd_all_bornbefore/1
install_gnd_accessors/0
install_dewiki_links/0
install_wikinames/0
install_geonames/0
install_person_stuff/0
register_ext_person/2
install_function_info/0
convert_geonames_to_prolog/0
convert_wikinames_to_prolog/0
convert_gnd_to_prolog/0
convert_gnd_to_wiki/0
convert_gnd_extract_items_in_wiki/0
convert_gnd_all_bornbefore/1
convert_gnd_extract_ontology/0
convert_dewiki_links/1

17

5 Annotation Documents

KBSET supports annotations that are not statically interspersed into the object text but
maintained separately in so-called annotation documents which can be combined with
the object text automatically. The specification of annotation in annotation documents
is done with static markup which uses LATEX syntax and embedded Prolog syntax to
specify attributes.

When annotation documents are combined with object texts, the portions with relevant
LATEX markup are extracted, which allows the annotation documents to contain arbitrary
other text, including LATEX code. Annotation documents can then be full fledged LATEX
documents that can be rendered on their own, which might be useful when writing
annotations.

The association of annotation and source documents is controlled by the annotated_by/2
predicate. See Sect. 4.6.

The markup in annotation documents is done with the LATEX command \xabout:

\xabout{Type}{PositionSpecifier}{Text}

Here is an example:

\xabout{source}{txt=’An dieser ersten revolutionären Umwandlung haben also’}
{Auszugsweise Übersetzung von \volcite{5}[S.~585--589]{comte:cours}.}

The Type argument is passed to the rendered LATEX code and can be used there, e.g., to
determine the color of the annotation.

PositionSpecifier specifies the positions(s) in the source text with which the annotation
is associated. It is in Prolog syntax. Currently the following is supported:

• txt=ListOfWords, where list specifies a sequence of words. If there is not exactly
a single match in the source text, at processing the annotations an error is raised.

• txt_multi=ListOfWords. Like txt, but the annotation is associated with all matches.
It is no error if there is no such match.

• txt_first=ListOfWords. Like txt, but the annotation is associated with the first
match. It is no error if there are several matches, but it is an error if there is no
match.

Text is the text of the annotation.

To obtain an annotation document that can independently processed by LATEX some
definition for the f\xabout command has to be provided in the document, for example:

\newcommand{\xabout}[3]{\par #3\par}

18

	Introduction
	Installation
	Requirements
	Further Software
	Data Files
	Platforms

	Configuration
	Suggested Emacs Setup
	Invoking the System
	Downloading and Preprocessing External Data
	Installation Hints for Microsoft Windows Platforms

	Emacs Interface
	Involved Mode, Buffers and Outputs
	Menus and Key Bindings
	Prolog Predicates Underlying the Emacs Interface

	Assistance Documents
	Conventions
	General Setup
	Specifying Paths to Auxiliary Directories
	Specifying File Locations

	Specifying External Knowledge Sources and their Preprocessing
	Loading Preprocessed External Data into the System
	Configuration of the Source Document Parsing
	Associating Annotation and Source Documents
	General Control of Named Entity Recognition
	Specifying Global Context Settings
	Supplementing Word Data
	Supplementing Further Entities
	Specifying Assistance to Named Entity Recognition
	Activating a Combination of Named Settings
	Summary of Predicates Defined and Used in Assistance Documents

	Annotation Documents

